Speed up hunyuan dit inference a bit.

This commit is contained in:
comfyanonymous 2024-08-10 07:36:27 -04:00
parent 1b5b8ca81a
commit ae197f651b
2 changed files with 4 additions and 4 deletions

View File

@ -47,7 +47,7 @@ def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x
def rotate_half(x): def rotate_half(x):
x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3) return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
@ -78,10 +78,9 @@ def apply_rotary_emb(
xk_out = None xk_out = None
if isinstance(freqs_cis, tuple): if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D] cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
cos, sin = cos.to(xq.device), sin.to(xq.device) xq_out = (xq * cos + rotate_half(xq) * sin)
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
if xk is not None: if xk is not None:
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk) xk_out = (xk * cos + rotate_half(xk) * sin)
else: else:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2] xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2] freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]

View File

@ -21,6 +21,7 @@ def calc_rope(x, patch_size, head_size):
sub_args = [start, stop, (th, tw)] sub_args = [start, stop, (th, tw)]
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads'] # head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
rope = get_2d_rotary_pos_embed(head_size, *sub_args) rope = get_2d_rotary_pos_embed(head_size, *sub_args)
rope = (rope[0].to(x), rope[1].to(x))
return rope return rope