Convert line endings to unix.

This commit is contained in:
comfyanonymous 2023-04-04 13:56:13 -04:00
parent cadef9ff61
commit af291e6f69

View File

@ -1,210 +1,210 @@
import numpy as np import numpy as np
import torch import torch
import torch.nn.functional as F import torch.nn.functional as F
from PIL import Image from PIL import Image
import comfy.utils import comfy.utils
class Blend: class Blend:
def __init__(self): def __init__(self):
pass pass
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"image1": ("IMAGE",), "image1": ("IMAGE",),
"image2": ("IMAGE",), "image2": ("IMAGE",),
"blend_factor": ("FLOAT", { "blend_factor": ("FLOAT", {
"default": 0.5, "default": 0.5,
"min": 0.0, "min": 0.0,
"max": 1.0, "max": 1.0,
"step": 0.01 "step": 0.01
}), }),
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],), "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
}, },
} }
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "blend_images" FUNCTION = "blend_images"
CATEGORY = "postprocessing" CATEGORY = "postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
if image1.shape != image2.shape: if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2) image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1) image2 = image2.permute(0, 2, 3, 1)
blended_image = self.blend_mode(image1, image2, blend_mode) blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1) blended_image = torch.clamp(blended_image, 0, 1)
return (blended_image,) return (blended_image,)
def blend_mode(self, img1, img2, mode): def blend_mode(self, img1, img2, mode):
if mode == "normal": if mode == "normal":
return img2 return img2
elif mode == "multiply": elif mode == "multiply":
return img1 * img2 return img1 * img2
elif mode == "screen": elif mode == "screen":
return 1 - (1 - img1) * (1 - img2) return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay": elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light": elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
else: else:
raise ValueError(f"Unsupported blend mode: {mode}") raise ValueError(f"Unsupported blend mode: {mode}")
def g(self, x): def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
class Blur: class Blur:
def __init__(self): def __init__(self):
pass pass
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"image": ("IMAGE",), "image": ("IMAGE",),
"blur_radius": ("INT", { "blur_radius": ("INT", {
"default": 1, "default": 1,
"min": 1, "min": 1,
"max": 31, "max": 31,
"step": 1 "step": 1
}), }),
"sigma": ("FLOAT", { "sigma": ("FLOAT", {
"default": 1.0, "default": 1.0,
"min": 0.1, "min": 0.1,
"max": 10.0, "max": 10.0,
"step": 0.1 "step": 0.1
}), }),
}, },
} }
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur" FUNCTION = "blur"
CATEGORY = "postprocessing" CATEGORY = "postprocessing"
def gaussian_kernel(self, kernel_size: int, sigma: float): def gaussian_kernel(self, kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij") x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y) d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum() return g / g.sum()
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0: if blur_radius == 0:
return (image,) return (image,)
batch_size, height, width, channels = image.shape batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1 kernel_size = blur_radius * 2 + 1
kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1) kernel = self.gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels) blurred = F.conv2d(image, kernel, padding=kernel_size // 2, groups=channels)
blurred = blurred.permute(0, 2, 3, 1) blurred = blurred.permute(0, 2, 3, 1)
return (blurred,) return (blurred,)
class Quantize: class Quantize:
def __init__(self): def __init__(self):
pass pass
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"image": ("IMAGE",), "image": ("IMAGE",),
"colors": ("INT", { "colors": ("INT", {
"default": 256, "default": 256,
"min": 1, "min": 1,
"max": 256, "max": 256,
"step": 1 "step": 1
}), }),
"dither": (["none", "floyd-steinberg"],), "dither": (["none", "floyd-steinberg"],),
}, },
} }
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "quantize" FUNCTION = "quantize"
CATEGORY = "postprocessing" CATEGORY = "postprocessing"
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"): def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
batch_size, height, width, _ = image.shape batch_size, height, width, _ = image.shape
result = torch.zeros_like(image) result = torch.zeros_like(image)
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
for b in range(batch_size): for b in range(batch_size):
tensor_image = image[b] tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy() img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB') pil_image = Image.fromarray(img, mode='RGB')
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option) quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array result[b] = quantized_array
return (result,) return (result,)
class Sharpen: class Sharpen:
def __init__(self): def __init__(self):
pass pass
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"image": ("IMAGE",), "image": ("IMAGE",),
"sharpen_radius": ("INT", { "sharpen_radius": ("INT", {
"default": 1, "default": 1,
"min": 1, "min": 1,
"max": 31, "max": 31,
"step": 1 "step": 1
}), }),
"alpha": ("FLOAT", { "alpha": ("FLOAT", {
"default": 1.0, "default": 1.0,
"min": 0.1, "min": 0.1,
"max": 5.0, "max": 5.0,
"step": 0.1 "step": 0.1
}), }),
}, },
} }
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
FUNCTION = "sharpen" FUNCTION = "sharpen"
CATEGORY = "postprocessing" CATEGORY = "postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float): def sharpen(self, image: torch.Tensor, sharpen_radius: int, alpha: float):
if sharpen_radius == 0: if sharpen_radius == 0:
return (image,) return (image,)
batch_size, height, width, channels = image.shape batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1 kernel_size = sharpen_radius * 2 + 1
kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1 kernel = torch.ones((kernel_size, kernel_size), dtype=torch.float32) * -1
center = kernel_size // 2 center = kernel_size // 2
kernel[center, center] = kernel_size**2 kernel[center, center] = kernel_size**2
kernel *= alpha kernel *= alpha
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels) sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)
sharpened = sharpened.permute(0, 2, 3, 1) sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1) result = torch.clamp(sharpened, 0, 1)
return (result,) return (result,)
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"Blend": Blend, "Blend": Blend,
"Blur": Blur, "Blur": Blur,
"Quantize": Quantize, "Quantize": Quantize,
"Sharpen": Sharpen, "Sharpen": Sharpen,
} }