Make scaled_dot_product switch to sliced attention on OOM.

This commit is contained in:
comfyanonymous 2023-05-20 15:43:39 -04:00
parent 797c4e8d3b
commit b8636a44aa

View File

@ -146,6 +146,41 @@ class ResnetBlock(nn.Module):
return x+h return x+h
def slice_attention(q, k, v):
r1 = torch.zeros_like(k, device=q.device)
scale = (int(q.shape[-1])**(-0.5))
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except model_management.OOM_EXCEPTION as e:
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
return r1
class AttnBlock(nn.Module): class AttnBlock(nn.Module):
def __init__(self, in_channels): def __init__(self, in_channels):
@ -183,48 +218,15 @@ class AttnBlock(nn.Module):
# compute attention # compute attention
b,c,h,w = q.shape b,c,h,w = q.shape
scale = (int(c)**(-0.5))
q = q.reshape(b,c,h*w) q = q.reshape(b,c,h*w)
q = q.permute(0,2,1) # b,hw,c q = q.permute(0,2,1) # b,hw,c
k = k.reshape(b,c,h*w) # b,c,hw k = k.reshape(b,c,h*w) # b,c,hw
v = v.reshape(b,c,h*w) v = v.reshape(b,c,h*w)
r1 = torch.zeros_like(k, device=q.device) r1 = slice_attention(q, k, v)
mem_free_total = model_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except model_management.OOM_EXCEPTION as e:
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again", steps)
h_ = r1.reshape(b,c,h,w) h_ = r1.reshape(b,c,h,w)
del r1 del r1
h_ = self.proj_out(h_) h_ = self.proj_out(h_)
return x+h_ return x+h_
@ -335,9 +337,14 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v), (q, k, v),
) )
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W) try:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W)
except model_management.OOM_EXCEPTION as e:
print("scaled_dot_product_attention OOMed: switched to slice attention")
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
out = self.proj_out(out) out = self.proj_out(out)
return x+out return x+out