Automatically use fp8 for diffusion model weights if:

Checkpoint contains weights in fp8.

There isn't enough memory to load the diffusion model in GPU vram.
This commit is contained in:
comfyanonymous 2024-08-03 13:45:19 -04:00
parent f123328b82
commit ba9095e5bd
4 changed files with 34 additions and 4 deletions

View File

@ -94,6 +94,7 @@ class BaseModel(torch.nn.Module):
self.concat_keys = () self.concat_keys = ()
logging.info("model_type {}".format(model_type.name)) logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels)) logging.debug("adm {}".format(self.adm_channels))
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype))
self.memory_usage_factor = model_config.memory_usage_factor self.memory_usage_factor = model_config.memory_usage_factor
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):

View File

@ -527,6 +527,9 @@ def unet_inital_load_device(parameters, dtype):
else: else:
return cpu_dev return cpu_dev
def maximum_vram_for_weights(device=None):
return (get_total_memory(device) * 0.8 - minimum_inference_memory())
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]):
if args.bf16_unet: if args.bf16_unet:
return torch.bfloat16 return torch.bfloat16
@ -536,6 +539,21 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e4m3fn return torch.float8_e4m3fn
if args.fp8_e5m2_unet: if args.fp8_e5m2_unet:
return torch.float8_e5m2 return torch.float8_e5m2
fp8_dtype = None
try:
for dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
if dtype in supported_dtypes:
fp8_dtype = dtype
break
except:
pass
if fp8_dtype is not None:
free_model_memory = maximum_vram_for_weights(device)
if model_params * 2 > free_model_memory:
return fp8_dtype
if should_use_fp16(device=device, model_params=model_params, manual_cast=True): if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes: if torch.float16 in supported_dtypes:
return torch.float16 return torch.float16
@ -871,7 +889,7 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
fp16_works = True fp16_works = True
if fp16_works or manual_cast: if fp16_works or manual_cast:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) free_model_memory = maximum_vram_for_weights(device)
if (not prioritize_performance) or model_params * 4 > free_model_memory: if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True return True
@ -920,7 +938,7 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
bf16_works = torch.cuda.is_bf16_supported() bf16_works = torch.cuda.is_bf16_supported()
if bf16_works or manual_cast: if bf16_works or manual_cast:
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) free_model_memory = maximum_vram_for_weights(device)
if (not prioritize_performance) or model_params * 4 > free_model_memory: if (not prioritize_performance) or model_params * 4 > free_model_memory:
return True return True

View File

@ -510,13 +510,14 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd) diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix) parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device() load_device = model_management.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix) model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
if model_config is None: if model_config is None:
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path)) raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=model_config.supported_inference_dtypes) unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=[weight_dtype] + model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes) manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype) model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)

View File

@ -40,9 +40,19 @@ def calculate_parameters(sd, prefix=""):
params = 0 params = 0
for k in sd.keys(): for k in sd.keys():
if k.startswith(prefix): if k.startswith(prefix):
params += sd[k].nelement() w = sd[k]
params += w.nelement()
return params return params
def weight_dtype(sd, prefix=""):
dtypes = {}
for k in sd.keys():
if k.startswith(prefix):
w = sd[k]
dtypes[w.dtype] = dtypes.get(w.dtype, 0) + 1
return max(dtypes, key=dtypes.get)
def state_dict_key_replace(state_dict, keys_to_replace): def state_dict_key_replace(state_dict, keys_to_replace):
for x in keys_to_replace: for x in keys_to_replace:
if x in state_dict: if x in state_dict: