mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Basic Hunyuan Video model support.
This commit is contained in:
parent
19ee5d9d8b
commit
bda1482a27
@ -157,16 +157,23 @@ vae_conversion_map_attn = [
|
|||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
def reshape_weight_for_sd(w):
|
def reshape_weight_for_sd(w, conv3d=False):
|
||||||
# convert HF linear weights to SD conv2d weights
|
# convert HF linear weights to SD conv2d weights
|
||||||
return w.reshape(*w.shape, 1, 1)
|
if conv3d:
|
||||||
|
return w.reshape(*w.shape, 1, 1, 1)
|
||||||
|
else:
|
||||||
|
return w.reshape(*w.shape, 1, 1)
|
||||||
|
|
||||||
|
|
||||||
def convert_vae_state_dict(vae_state_dict):
|
def convert_vae_state_dict(vae_state_dict):
|
||||||
mapping = {k: k for k in vae_state_dict.keys()}
|
mapping = {k: k for k in vae_state_dict.keys()}
|
||||||
|
conv3d = False
|
||||||
for k, v in mapping.items():
|
for k, v in mapping.items():
|
||||||
for sd_part, hf_part in vae_conversion_map:
|
for sd_part, hf_part in vae_conversion_map:
|
||||||
v = v.replace(hf_part, sd_part)
|
v = v.replace(hf_part, sd_part)
|
||||||
|
if v.endswith(".conv.weight"):
|
||||||
|
if not conv3d and vae_state_dict[k].ndim == 5:
|
||||||
|
conv3d = True
|
||||||
mapping[k] = v
|
mapping[k] = v
|
||||||
for k, v in mapping.items():
|
for k, v in mapping.items():
|
||||||
if "attentions" in k:
|
if "attentions" in k:
|
||||||
@ -179,7 +186,7 @@ def convert_vae_state_dict(vae_state_dict):
|
|||||||
for weight_name in weights_to_convert:
|
for weight_name in weights_to_convert:
|
||||||
if f"mid.attn_1.{weight_name}.weight" in k:
|
if f"mid.attn_1.{weight_name}.weight" in k:
|
||||||
logging.debug(f"Reshaping {k} for SD format")
|
logging.debug(f"Reshaping {k} for SD format")
|
||||||
new_state_dict[k] = reshape_weight_for_sd(v)
|
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
|
||||||
return new_state_dict
|
return new_state_dict
|
||||||
|
|
||||||
|
|
||||||
|
@ -352,3 +352,7 @@ class LTXV(LatentFormat):
|
|||||||
]
|
]
|
||||||
|
|
||||||
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
|
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
|
||||||
|
|
||||||
|
class HunyuanVideo(LatentFormat):
|
||||||
|
latent_channels = 16
|
||||||
|
scale_factor = 0.476986
|
||||||
|
@ -114,7 +114,7 @@ class Modulation(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class DoubleStreamBlock(nn.Module):
|
class DoubleStreamBlock(nn.Module):
|
||||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||||
@ -141,6 +141,7 @@ class DoubleStreamBlock(nn.Module):
|
|||||||
nn.GELU(approximate="tanh"),
|
nn.GELU(approximate="tanh"),
|
||||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
)
|
)
|
||||||
|
self.flipped_img_txt = flipped_img_txt
|
||||||
|
|
||||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
|
||||||
img_mod1, img_mod2 = self.img_mod(vec)
|
img_mod1, img_mod2 = self.img_mod(vec)
|
||||||
@ -160,13 +161,22 @@ class DoubleStreamBlock(nn.Module):
|
|||||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||||
|
|
||||||
# run actual attention
|
if self.flipped_img_txt:
|
||||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
# run actual attention
|
||||||
torch.cat((txt_k, img_k), dim=2),
|
attn = attention(torch.cat((img_q, txt_q), dim=2),
|
||||||
torch.cat((txt_v, img_v), dim=2),
|
torch.cat((img_k, txt_k), dim=2),
|
||||||
pe=pe, mask=attn_mask)
|
torch.cat((img_v, txt_v), dim=2),
|
||||||
|
pe=pe, mask=attn_mask)
|
||||||
|
|
||||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||||
|
else:
|
||||||
|
# run actual attention
|
||||||
|
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
||||||
|
torch.cat((txt_k, img_k), dim=2),
|
||||||
|
torch.cat((txt_v, img_v), dim=2),
|
||||||
|
pe=pe, mask=attn_mask)
|
||||||
|
|
||||||
|
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||||
|
|
||||||
# calculate the img bloks
|
# calculate the img bloks
|
||||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||||
|
330
comfy/ldm/hunyuan_video/model.py
Normal file
330
comfy/ldm/hunyuan_video/model.py
Normal file
@ -0,0 +1,330 @@
|
|||||||
|
#Based on Flux code because of weird hunyuan video code license.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import comfy.ldm.flux.layers
|
||||||
|
import comfy.ldm.modules.diffusionmodules.mmdit
|
||||||
|
from comfy.ldm.modules.attention import optimized_attention
|
||||||
|
|
||||||
|
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from einops import repeat
|
||||||
|
|
||||||
|
from torch import Tensor, nn
|
||||||
|
|
||||||
|
from comfy.ldm.flux.layers import (
|
||||||
|
DoubleStreamBlock,
|
||||||
|
EmbedND,
|
||||||
|
LastLayer,
|
||||||
|
MLPEmbedder,
|
||||||
|
SingleStreamBlock,
|
||||||
|
timestep_embedding
|
||||||
|
)
|
||||||
|
|
||||||
|
import comfy.ldm.common_dit
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class HunyuanVideoParams:
|
||||||
|
in_channels: int
|
||||||
|
out_channels: int
|
||||||
|
vec_in_dim: int
|
||||||
|
context_in_dim: int
|
||||||
|
hidden_size: int
|
||||||
|
mlp_ratio: float
|
||||||
|
num_heads: int
|
||||||
|
depth: int
|
||||||
|
depth_single_blocks: int
|
||||||
|
axes_dim: list
|
||||||
|
theta: int
|
||||||
|
patch_size: list
|
||||||
|
qkv_bias: bool
|
||||||
|
guidance_embed: bool
|
||||||
|
|
||||||
|
|
||||||
|
class SelfAttentionRef(nn.Module):
|
||||||
|
def __init__(self, dim: int, qkv_bias: bool = False, dtype=None, device=None, operations=None):
|
||||||
|
super().__init__()
|
||||||
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||||
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
|
||||||
|
class TokenRefinerBlock(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size,
|
||||||
|
heads,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.heads = heads
|
||||||
|
mlp_hidden_dim = hidden_size * 4
|
||||||
|
|
||||||
|
self.adaLN_modulation = nn.Sequential(
|
||||||
|
nn.SiLU(),
|
||||||
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.norm1 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
self.self_attn = SelfAttentionRef(hidden_size, True, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
self.norm2 = operations.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
self.mlp = nn.Sequential(
|
||||||
|
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||||
|
nn.SiLU(),
|
||||||
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, c, mask):
|
||||||
|
mod1, mod2 = self.adaLN_modulation(c).chunk(2, dim=1)
|
||||||
|
|
||||||
|
norm_x = self.norm1(x)
|
||||||
|
qkv = self.self_attn.qkv(norm_x)
|
||||||
|
q, k, v = qkv.reshape(qkv.shape[0], qkv.shape[1], 3, self.heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
attn = optimized_attention(q, k, v, self.heads, mask=mask, skip_reshape=True)
|
||||||
|
|
||||||
|
x = x + self.self_attn.proj(attn) * mod1.unsqueeze(1)
|
||||||
|
x = x + self.mlp(self.norm2(x)) * mod2.unsqueeze(1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class IndividualTokenRefiner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size,
|
||||||
|
heads,
|
||||||
|
num_blocks,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
TokenRefinerBlock(
|
||||||
|
hidden_size=hidden_size,
|
||||||
|
heads=heads,
|
||||||
|
dtype=dtype,
|
||||||
|
device=device,
|
||||||
|
operations=operations
|
||||||
|
)
|
||||||
|
for _ in range(num_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def forward(self, x, c, mask):
|
||||||
|
m = None
|
||||||
|
if mask is not None:
|
||||||
|
m = mask.view(mask.shape[0], 1, 1, mask.shape[1]).repeat(1, 1, mask.shape[1], 1)
|
||||||
|
m = m + m.transpose(2, 3)
|
||||||
|
|
||||||
|
for block in self.blocks:
|
||||||
|
x = block(x, c, m)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class TokenRefiner(nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
text_dim,
|
||||||
|
hidden_size,
|
||||||
|
heads,
|
||||||
|
num_blocks,
|
||||||
|
dtype=None,
|
||||||
|
device=None,
|
||||||
|
operations=None
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.input_embedder = operations.Linear(text_dim, hidden_size, bias=True, dtype=dtype, device=device)
|
||||||
|
self.t_embedder = MLPEmbedder(256, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.c_embedder = MLPEmbedder(text_dim, hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.individual_token_refiner = IndividualTokenRefiner(hidden_size, heads, num_blocks, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x,
|
||||||
|
timesteps,
|
||||||
|
mask,
|
||||||
|
):
|
||||||
|
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
|
||||||
|
# m = mask.float().unsqueeze(-1)
|
||||||
|
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
|
||||||
|
c = x.sum(dim=1) / x.shape[1]
|
||||||
|
|
||||||
|
c = t + self.c_embedder(c.to(x.dtype))
|
||||||
|
x = self.input_embedder(x)
|
||||||
|
x = self.individual_token_refiner(x, c, mask)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class HunyuanVideo(nn.Module):
|
||||||
|
"""
|
||||||
|
Transformer model for flow matching on sequences.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.dtype = dtype
|
||||||
|
params = HunyuanVideoParams(**kwargs)
|
||||||
|
self.params = params
|
||||||
|
self.patch_size = params.patch_size
|
||||||
|
self.in_channels = params.in_channels
|
||||||
|
self.out_channels = params.out_channels
|
||||||
|
if params.hidden_size % params.num_heads != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
||||||
|
)
|
||||||
|
pe_dim = params.hidden_size // params.num_heads
|
||||||
|
if sum(params.axes_dim) != pe_dim:
|
||||||
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
||||||
|
self.hidden_size = params.hidden_size
|
||||||
|
self.num_heads = params.num_heads
|
||||||
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||||
|
|
||||||
|
self.img_in = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(None, self.patch_size, self.in_channels, self.hidden_size, conv3d=True, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
|
||||||
|
self.guidance_in = (
|
||||||
|
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
|
||||||
|
)
|
||||||
|
|
||||||
|
self.txt_in = TokenRefiner(params.context_in_dim, self.hidden_size, self.num_heads, 2, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
self.double_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
DoubleStreamBlock(
|
||||||
|
self.hidden_size,
|
||||||
|
self.num_heads,
|
||||||
|
mlp_ratio=params.mlp_ratio,
|
||||||
|
qkv_bias=params.qkv_bias,
|
||||||
|
flipped_img_txt=True,
|
||||||
|
dtype=dtype, device=device, operations=operations
|
||||||
|
)
|
||||||
|
for _ in range(params.depth)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.single_blocks = nn.ModuleList(
|
||||||
|
[
|
||||||
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
||||||
|
for _ in range(params.depth_single_blocks)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
if final_layer:
|
||||||
|
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
|
def forward_orig(
|
||||||
|
self,
|
||||||
|
img: Tensor,
|
||||||
|
img_ids: Tensor,
|
||||||
|
txt: Tensor,
|
||||||
|
txt_ids: Tensor,
|
||||||
|
txt_mask: Tensor,
|
||||||
|
timesteps: Tensor,
|
||||||
|
y: Tensor,
|
||||||
|
guidance: Tensor = None,
|
||||||
|
control=None,
|
||||||
|
transformer_options={},
|
||||||
|
) -> Tensor:
|
||||||
|
patches_replace = transformer_options.get("patches_replace", {})
|
||||||
|
|
||||||
|
initial_shape = list(img.shape)
|
||||||
|
# running on sequences img
|
||||||
|
img = self.img_in(img)
|
||||||
|
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||||
|
|
||||||
|
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||||
|
|
||||||
|
if self.params.guidance_embed:
|
||||||
|
if guidance is None:
|
||||||
|
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||||
|
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||||
|
|
||||||
|
if txt_mask is not None and not torch.is_floating_point(txt_mask):
|
||||||
|
txt_mask = (txt_mask - 1).to(img.dtype) * torch.finfo(img.dtype).max
|
||||||
|
|
||||||
|
txt = self.txt_in(txt, timesteps, txt_mask)
|
||||||
|
|
||||||
|
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||||
|
pe = self.pe_embedder(ids)
|
||||||
|
|
||||||
|
img_len = img.shape[1]
|
||||||
|
if txt_mask is not None:
|
||||||
|
attn_mask_len = img_len + txt.shape[1]
|
||||||
|
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
|
||||||
|
attn_mask[:, 0, img_len:] = txt_mask
|
||||||
|
else:
|
||||||
|
attn_mask = None
|
||||||
|
|
||||||
|
blocks_replace = patches_replace.get("dit", {})
|
||||||
|
for i, block in enumerate(self.double_blocks):
|
||||||
|
if ("double_block", i) in blocks_replace:
|
||||||
|
def block_wrap(args):
|
||||||
|
out = {}
|
||||||
|
out["img"], out["txt"] = block(img=args["img"], txt=args["txt"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||||
|
return out
|
||||||
|
|
||||||
|
out = blocks_replace[("double_block", i)]({"img": img, "txt": txt, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||||
|
txt = out["txt"]
|
||||||
|
img = out["img"]
|
||||||
|
else:
|
||||||
|
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||||
|
|
||||||
|
if control is not None: # Controlnet
|
||||||
|
control_i = control.get("input")
|
||||||
|
if i < len(control_i):
|
||||||
|
add = control_i[i]
|
||||||
|
if add is not None:
|
||||||
|
img += add
|
||||||
|
|
||||||
|
img = torch.cat((img, txt), 1)
|
||||||
|
|
||||||
|
for i, block in enumerate(self.single_blocks):
|
||||||
|
if ("single_block", i) in blocks_replace:
|
||||||
|
def block_wrap(args):
|
||||||
|
out = {}
|
||||||
|
out["img"] = block(args["img"], vec=args["vec"], pe=args["pe"], attn_mask=args["attention_mask"])
|
||||||
|
return out
|
||||||
|
|
||||||
|
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||||
|
img = out["img"]
|
||||||
|
else:
|
||||||
|
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||||
|
|
||||||
|
if control is not None: # Controlnet
|
||||||
|
control_o = control.get("output")
|
||||||
|
if i < len(control_o):
|
||||||
|
add = control_o[i]
|
||||||
|
if add is not None:
|
||||||
|
img[:, : img_len] += add
|
||||||
|
|
||||||
|
img = img[:, : img_len]
|
||||||
|
|
||||||
|
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||||
|
|
||||||
|
shape = initial_shape[-3:]
|
||||||
|
for i in range(len(shape)):
|
||||||
|
shape[i] = shape[i] // self.patch_size[i]
|
||||||
|
img = img.reshape([img.shape[0]] + shape + [self.out_channels] + self.patch_size)
|
||||||
|
img = img.permute(0, 4, 1, 5, 2, 6, 3, 7)
|
||||||
|
img = img.reshape(initial_shape)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def forward(self, x, timestep, context, y, guidance, attention_mask=None, control=None, transformer_options={}, **kwargs):
|
||||||
|
bs, c, t, h, w = x.shape
|
||||||
|
patch_size = self.patch_size
|
||||||
|
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||||
|
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
||||||
|
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
||||||
|
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||||
|
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
|
||||||
|
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
|
||||||
|
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||||
|
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||||
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||||
|
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
|
||||||
|
return out
|
@ -162,12 +162,19 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
|||||||
},
|
},
|
||||||
**kwargs,
|
**kwargs,
|
||||||
)
|
)
|
||||||
self.quant_conv = comfy.ops.disable_weight_init.Conv2d(
|
|
||||||
|
if ddconfig.get("conv3d", False):
|
||||||
|
conv_op = comfy.ops.disable_weight_init.Conv3d
|
||||||
|
else:
|
||||||
|
conv_op = comfy.ops.disable_weight_init.Conv2d
|
||||||
|
|
||||||
|
self.quant_conv = conv_op(
|
||||||
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
(1 + ddconfig["double_z"]) * ddconfig["z_channels"],
|
||||||
(1 + ddconfig["double_z"]) * embed_dim,
|
(1 + ddconfig["double_z"]) * embed_dim,
|
||||||
1,
|
1,
|
||||||
)
|
)
|
||||||
self.post_quant_conv = comfy.ops.disable_weight_init.Conv2d(embed_dim, ddconfig["z_channels"], 1)
|
|
||||||
|
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
|
||||||
self.embed_dim = embed_dim
|
self.embed_dim = embed_dim
|
||||||
|
|
||||||
def get_autoencoder_params(self) -> list:
|
def get_autoencoder_params(self) -> list:
|
||||||
|
@ -43,51 +43,100 @@ def Normalize(in_channels, num_groups=32):
|
|||||||
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
||||||
|
|
||||||
|
|
||||||
|
class VideoConv3d(nn.Module):
|
||||||
|
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.padding_mode = padding_mode
|
||||||
|
if padding != 0:
|
||||||
|
padding = (padding, padding, padding, padding, kernel_size - 1, 0)
|
||||||
|
else:
|
||||||
|
kwargs["padding"] = padding
|
||||||
|
|
||||||
|
self.padding = padding
|
||||||
|
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
if self.padding != 0:
|
||||||
|
x = torch.nn.functional.pad(x, self.padding, mode=self.padding_mode)
|
||||||
|
return self.conv(x)
|
||||||
|
|
||||||
|
def interpolate_up(x, scale_factor):
|
||||||
|
try:
|
||||||
|
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||||
|
except: #operation not implemented for bf16
|
||||||
|
orig_shape = list(x.shape)
|
||||||
|
out_shape = orig_shape[:2]
|
||||||
|
for i in range(len(orig_shape) - 2):
|
||||||
|
out_shape.append(round(orig_shape[i + 2] * scale_factor[i]))
|
||||||
|
out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device)
|
||||||
|
split = 8
|
||||||
|
l = out.shape[1] // split
|
||||||
|
for i in range(0, out.shape[1], l):
|
||||||
|
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype)
|
||||||
|
return out
|
||||||
|
|
||||||
class Upsample(nn.Module):
|
class Upsample(nn.Module):
|
||||||
def __init__(self, in_channels, with_conv):
|
def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.with_conv = with_conv
|
self.with_conv = with_conv
|
||||||
|
self.scale_factor = scale_factor
|
||||||
|
|
||||||
if self.with_conv:
|
if self.with_conv:
|
||||||
self.conv = ops.Conv2d(in_channels,
|
self.conv = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=1)
|
padding=1)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
try:
|
scale_factor = self.scale_factor
|
||||||
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
if not isinstance(scale_factor, tuple):
|
||||||
except: #operation not implemented for bf16
|
scale_factor = (scale_factor,) * (x.ndim - 2)
|
||||||
b, c, h, w = x.shape
|
|
||||||
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device)
|
|
||||||
split = 8
|
|
||||||
l = out.shape[1] // split
|
|
||||||
for i in range(0, out.shape[1], l):
|
|
||||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype)
|
|
||||||
del x
|
|
||||||
x = out
|
|
||||||
|
|
||||||
|
if x.ndim == 5 and scale_factor[0] > 1.0:
|
||||||
|
t = x.shape[2]
|
||||||
|
if t > 1:
|
||||||
|
a, b = x.split((1, t - 1), dim=2)
|
||||||
|
del x
|
||||||
|
b = interpolate_up(b, scale_factor)
|
||||||
|
else:
|
||||||
|
a = x
|
||||||
|
|
||||||
|
a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)
|
||||||
|
if t > 1:
|
||||||
|
x = torch.cat((a, b), dim=2)
|
||||||
|
else:
|
||||||
|
x = a
|
||||||
|
else:
|
||||||
|
x = interpolate_up(x, self.scale_factor)
|
||||||
if self.with_conv:
|
if self.with_conv:
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class Downsample(nn.Module):
|
class Downsample(nn.Module):
|
||||||
def __init__(self, in_channels, with_conv):
|
def __init__(self, in_channels, with_conv, stride=2, conv_op=ops.Conv2d):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.with_conv = with_conv
|
self.with_conv = with_conv
|
||||||
if self.with_conv:
|
if self.with_conv:
|
||||||
# no asymmetric padding in torch conv, must do it ourselves
|
# no asymmetric padding in torch conv, must do it ourselves
|
||||||
self.conv = ops.Conv2d(in_channels,
|
self.conv = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=2,
|
stride=stride,
|
||||||
padding=0)
|
padding=0)
|
||||||
|
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
if self.with_conv:
|
if self.with_conv:
|
||||||
pad = (0,1,0,1)
|
if x.ndim == 4:
|
||||||
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
pad = (0, 1, 0, 1)
|
||||||
|
mode = "constant"
|
||||||
|
x = torch.nn.functional.pad(x, pad, mode=mode, value=0)
|
||||||
|
elif x.ndim == 5:
|
||||||
|
pad = (1, 1, 1, 1, 2, 0)
|
||||||
|
mode = "replicate"
|
||||||
|
x = torch.nn.functional.pad(x, pad, mode=mode)
|
||||||
x = self.conv(x)
|
x = self.conv(x)
|
||||||
else:
|
else:
|
||||||
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
||||||
@ -96,7 +145,7 @@ class Downsample(nn.Module):
|
|||||||
|
|
||||||
class ResnetBlock(nn.Module):
|
class ResnetBlock(nn.Module):
|
||||||
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
|
||||||
dropout, temb_channels=512):
|
dropout, temb_channels=512, conv_op=ops.Conv2d):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
out_channels = in_channels if out_channels is None else out_channels
|
out_channels = in_channels if out_channels is None else out_channels
|
||||||
@ -105,7 +154,7 @@ class ResnetBlock(nn.Module):
|
|||||||
|
|
||||||
self.swish = torch.nn.SiLU(inplace=True)
|
self.swish = torch.nn.SiLU(inplace=True)
|
||||||
self.norm1 = Normalize(in_channels)
|
self.norm1 = Normalize(in_channels)
|
||||||
self.conv1 = ops.Conv2d(in_channels,
|
self.conv1 = conv_op(in_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -115,20 +164,20 @@ class ResnetBlock(nn.Module):
|
|||||||
out_channels)
|
out_channels)
|
||||||
self.norm2 = Normalize(out_channels)
|
self.norm2 = Normalize(out_channels)
|
||||||
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
self.dropout = torch.nn.Dropout(dropout, inplace=True)
|
||||||
self.conv2 = ops.Conv2d(out_channels,
|
self.conv2 = conv_op(out_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=1)
|
padding=1)
|
||||||
if self.in_channels != self.out_channels:
|
if self.in_channels != self.out_channels:
|
||||||
if self.use_conv_shortcut:
|
if self.use_conv_shortcut:
|
||||||
self.conv_shortcut = ops.Conv2d(in_channels,
|
self.conv_shortcut = conv_op(in_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=1)
|
padding=1)
|
||||||
else:
|
else:
|
||||||
self.nin_shortcut = ops.Conv2d(in_channels,
|
self.nin_shortcut = conv_op(in_channels,
|
||||||
out_channels,
|
out_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -194,21 +243,25 @@ def slice_attention(q, k, v):
|
|||||||
|
|
||||||
def normal_attention(q, k, v):
|
def normal_attention(q, k, v):
|
||||||
# compute attention
|
# compute attention
|
||||||
b,c,h,w = q.shape
|
orig_shape = q.shape
|
||||||
|
b = orig_shape[0]
|
||||||
|
c = orig_shape[1]
|
||||||
|
|
||||||
q = q.reshape(b,c,h*w)
|
q = q.reshape(b, c, -1)
|
||||||
q = q.permute(0,2,1) # b,hw,c
|
q = q.permute(0, 2, 1) # b,hw,c
|
||||||
k = k.reshape(b,c,h*w) # b,c,hw
|
k = k.reshape(b, c, -1) # b,c,hw
|
||||||
v = v.reshape(b,c,h*w)
|
v = v.reshape(b, c, -1)
|
||||||
|
|
||||||
r1 = slice_attention(q, k, v)
|
r1 = slice_attention(q, k, v)
|
||||||
h_ = r1.reshape(b,c,h,w)
|
h_ = r1.reshape(orig_shape)
|
||||||
del r1
|
del r1
|
||||||
return h_
|
return h_
|
||||||
|
|
||||||
def xformers_attention(q, k, v):
|
def xformers_attention(q, k, v):
|
||||||
# compute attention
|
# compute attention
|
||||||
B, C, H, W = q.shape
|
orig_shape = q.shape
|
||||||
|
B = orig_shape[0]
|
||||||
|
C = orig_shape[1]
|
||||||
q, k, v = map(
|
q, k, v = map(
|
||||||
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
|
||||||
(q, k, v),
|
(q, k, v),
|
||||||
@ -216,14 +269,16 @@ def xformers_attention(q, k, v):
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
|
||||||
out = out.transpose(1, 2).reshape(B, C, H, W)
|
out = out.transpose(1, 2).reshape(orig_shape)
|
||||||
except NotImplementedError:
|
except NotImplementedError:
|
||||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def pytorch_attention(q, k, v):
|
def pytorch_attention(q, k, v):
|
||||||
# compute attention
|
# compute attention
|
||||||
B, C, H, W = q.shape
|
orig_shape = q.shape
|
||||||
|
B = orig_shape[0]
|
||||||
|
C = orig_shape[1]
|
||||||
q, k, v = map(
|
q, k, v = map(
|
||||||
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
||||||
(q, k, v),
|
(q, k, v),
|
||||||
@ -231,35 +286,35 @@ def pytorch_attention(q, k, v):
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||||
out = out.transpose(2, 3).reshape(B, C, H, W)
|
out = out.transpose(2, 3).reshape(orig_shape)
|
||||||
except model_management.OOM_EXCEPTION:
|
except model_management.OOM_EXCEPTION:
|
||||||
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
class AttnBlock(nn.Module):
|
class AttnBlock(nn.Module):
|
||||||
def __init__(self, in_channels):
|
def __init__(self, in_channels, conv_op=ops.Conv2d):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
|
|
||||||
self.norm = Normalize(in_channels)
|
self.norm = Normalize(in_channels)
|
||||||
self.q = ops.Conv2d(in_channels,
|
self.q = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=0)
|
padding=0)
|
||||||
self.k = ops.Conv2d(in_channels,
|
self.k = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=0)
|
padding=0)
|
||||||
self.v = ops.Conv2d(in_channels,
|
self.v = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
padding=0)
|
padding=0)
|
||||||
self.proj_out = ops.Conv2d(in_channels,
|
self.proj_out = conv_op(in_channels,
|
||||||
in_channels,
|
in_channels,
|
||||||
kernel_size=1,
|
kernel_size=1,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -289,8 +344,8 @@ class AttnBlock(nn.Module):
|
|||||||
return x+h_
|
return x+h_
|
||||||
|
|
||||||
|
|
||||||
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None, conv_op=ops.Conv2d):
|
||||||
return AttnBlock(in_channels)
|
return AttnBlock(in_channels, conv_op=conv_op)
|
||||||
|
|
||||||
|
|
||||||
class Model(nn.Module):
|
class Model(nn.Module):
|
||||||
@ -449,6 +504,7 @@ class Encoder(nn.Module):
|
|||||||
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
|
||||||
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
|
||||||
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
|
||||||
|
conv3d=False, time_compress=None,
|
||||||
**ignore_kwargs):
|
**ignore_kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
if use_linear_attn: attn_type = "linear"
|
if use_linear_attn: attn_type = "linear"
|
||||||
@ -459,8 +515,15 @@ class Encoder(nn.Module):
|
|||||||
self.resolution = resolution
|
self.resolution = resolution
|
||||||
self.in_channels = in_channels
|
self.in_channels = in_channels
|
||||||
|
|
||||||
|
if conv3d:
|
||||||
|
conv_op = VideoConv3d
|
||||||
|
mid_attn_conv_op = ops.Conv3d
|
||||||
|
else:
|
||||||
|
conv_op = ops.Conv2d
|
||||||
|
mid_attn_conv_op = ops.Conv2d
|
||||||
|
|
||||||
# downsampling
|
# downsampling
|
||||||
self.conv_in = ops.Conv2d(in_channels,
|
self.conv_in = conv_op(in_channels,
|
||||||
self.ch,
|
self.ch,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -479,15 +542,20 @@ class Encoder(nn.Module):
|
|||||||
block.append(ResnetBlock(in_channels=block_in,
|
block.append(ResnetBlock(in_channels=block_in,
|
||||||
out_channels=block_out,
|
out_channels=block_out,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout))
|
dropout=dropout,
|
||||||
|
conv_op=conv_op))
|
||||||
block_in = block_out
|
block_in = block_out
|
||||||
if curr_res in attn_resolutions:
|
if curr_res in attn_resolutions:
|
||||||
attn.append(make_attn(block_in, attn_type=attn_type))
|
attn.append(make_attn(block_in, attn_type=attn_type, conv_op=conv_op))
|
||||||
down = nn.Module()
|
down = nn.Module()
|
||||||
down.block = block
|
down.block = block
|
||||||
down.attn = attn
|
down.attn = attn
|
||||||
if i_level != self.num_resolutions-1:
|
if i_level != self.num_resolutions-1:
|
||||||
down.downsample = Downsample(block_in, resamp_with_conv)
|
stride = 2
|
||||||
|
if time_compress is not None:
|
||||||
|
if (self.num_resolutions - 1 - i_level) > math.log2(time_compress):
|
||||||
|
stride = (1, 2, 2)
|
||||||
|
down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op)
|
||||||
curr_res = curr_res // 2
|
curr_res = curr_res // 2
|
||||||
self.down.append(down)
|
self.down.append(down)
|
||||||
|
|
||||||
@ -496,16 +564,18 @@ class Encoder(nn.Module):
|
|||||||
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
self.mid.block_1 = ResnetBlock(in_channels=block_in,
|
||||||
out_channels=block_in,
|
out_channels=block_in,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout)
|
dropout=dropout,
|
||||||
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
|
conv_op=conv_op)
|
||||||
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type, conv_op=mid_attn_conv_op)
|
||||||
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
self.mid.block_2 = ResnetBlock(in_channels=block_in,
|
||||||
out_channels=block_in,
|
out_channels=block_in,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout)
|
dropout=dropout,
|
||||||
|
conv_op=conv_op)
|
||||||
|
|
||||||
# end
|
# end
|
||||||
self.norm_out = Normalize(block_in)
|
self.norm_out = Normalize(block_in)
|
||||||
self.conv_out = ops.Conv2d(block_in,
|
self.conv_out = conv_op(block_in,
|
||||||
2*z_channels if double_z else z_channels,
|
2*z_channels if double_z else z_channels,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -543,6 +613,8 @@ class Decoder(nn.Module):
|
|||||||
conv_out_op=ops.Conv2d,
|
conv_out_op=ops.Conv2d,
|
||||||
resnet_op=ResnetBlock,
|
resnet_op=ResnetBlock,
|
||||||
attn_op=AttnBlock,
|
attn_op=AttnBlock,
|
||||||
|
conv3d=False,
|
||||||
|
time_compress=None,
|
||||||
**ignorekwargs):
|
**ignorekwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.ch = ch
|
self.ch = ch
|
||||||
@ -554,6 +626,14 @@ class Decoder(nn.Module):
|
|||||||
self.give_pre_end = give_pre_end
|
self.give_pre_end = give_pre_end
|
||||||
self.tanh_out = tanh_out
|
self.tanh_out = tanh_out
|
||||||
|
|
||||||
|
if conv3d:
|
||||||
|
conv_op = VideoConv3d
|
||||||
|
conv_out_op = VideoConv3d
|
||||||
|
mid_attn_conv_op = ops.Conv3d
|
||||||
|
else:
|
||||||
|
conv_op = ops.Conv2d
|
||||||
|
mid_attn_conv_op = ops.Conv2d
|
||||||
|
|
||||||
# compute block_in and curr_res at lowest res
|
# compute block_in and curr_res at lowest res
|
||||||
block_in = ch*ch_mult[self.num_resolutions-1]
|
block_in = ch*ch_mult[self.num_resolutions-1]
|
||||||
curr_res = resolution // 2**(self.num_resolutions-1)
|
curr_res = resolution // 2**(self.num_resolutions-1)
|
||||||
@ -562,7 +642,7 @@ class Decoder(nn.Module):
|
|||||||
self.z_shape, np.prod(self.z_shape)))
|
self.z_shape, np.prod(self.z_shape)))
|
||||||
|
|
||||||
# z to block_in
|
# z to block_in
|
||||||
self.conv_in = ops.Conv2d(z_channels,
|
self.conv_in = conv_op(z_channels,
|
||||||
block_in,
|
block_in,
|
||||||
kernel_size=3,
|
kernel_size=3,
|
||||||
stride=1,
|
stride=1,
|
||||||
@ -573,12 +653,14 @@ class Decoder(nn.Module):
|
|||||||
self.mid.block_1 = resnet_op(in_channels=block_in,
|
self.mid.block_1 = resnet_op(in_channels=block_in,
|
||||||
out_channels=block_in,
|
out_channels=block_in,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout)
|
dropout=dropout,
|
||||||
self.mid.attn_1 = attn_op(block_in)
|
conv_op=conv_op)
|
||||||
|
self.mid.attn_1 = attn_op(block_in, conv_op=mid_attn_conv_op)
|
||||||
self.mid.block_2 = resnet_op(in_channels=block_in,
|
self.mid.block_2 = resnet_op(in_channels=block_in,
|
||||||
out_channels=block_in,
|
out_channels=block_in,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout)
|
dropout=dropout,
|
||||||
|
conv_op=conv_op)
|
||||||
|
|
||||||
# upsampling
|
# upsampling
|
||||||
self.up = nn.ModuleList()
|
self.up = nn.ModuleList()
|
||||||
@ -590,15 +672,21 @@ class Decoder(nn.Module):
|
|||||||
block.append(resnet_op(in_channels=block_in,
|
block.append(resnet_op(in_channels=block_in,
|
||||||
out_channels=block_out,
|
out_channels=block_out,
|
||||||
temb_channels=self.temb_ch,
|
temb_channels=self.temb_ch,
|
||||||
dropout=dropout))
|
dropout=dropout,
|
||||||
|
conv_op=conv_op))
|
||||||
block_in = block_out
|
block_in = block_out
|
||||||
if curr_res in attn_resolutions:
|
if curr_res in attn_resolutions:
|
||||||
attn.append(attn_op(block_in))
|
attn.append(attn_op(block_in, conv_op=conv_op))
|
||||||
up = nn.Module()
|
up = nn.Module()
|
||||||
up.block = block
|
up.block = block
|
||||||
up.attn = attn
|
up.attn = attn
|
||||||
if i_level != 0:
|
if i_level != 0:
|
||||||
up.upsample = Upsample(block_in, resamp_with_conv)
|
scale_factor = 2.0
|
||||||
|
if time_compress is not None:
|
||||||
|
if i_level > math.log2(time_compress):
|
||||||
|
scale_factor = (1.0, 2.0, 2.0)
|
||||||
|
|
||||||
|
up.upsample = Upsample(block_in, resamp_with_conv, conv_op=conv_op, scale_factor=scale_factor)
|
||||||
curr_res = curr_res * 2
|
curr_res = curr_res * 2
|
||||||
self.up.insert(0, up) # prepend to get consistent order
|
self.up.insert(0, up) # prepend to get consistent order
|
||||||
|
|
||||||
|
@ -194,6 +194,7 @@ def make_time_attn(
|
|||||||
attn_kwargs=None,
|
attn_kwargs=None,
|
||||||
alpha: float = 0,
|
alpha: float = 0,
|
||||||
merge_strategy: str = "learned",
|
merge_strategy: str = "learned",
|
||||||
|
conv_op=ops.Conv2d,
|
||||||
):
|
):
|
||||||
return partialclass(
|
return partialclass(
|
||||||
AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
AttnVideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
||||||
|
@ -31,6 +31,7 @@ import comfy.ldm.audio.dit
|
|||||||
import comfy.ldm.audio.embedders
|
import comfy.ldm.audio.embedders
|
||||||
import comfy.ldm.flux.model
|
import comfy.ldm.flux.model
|
||||||
import comfy.ldm.lightricks.model
|
import comfy.ldm.lightricks.model
|
||||||
|
import comfy.ldm.hunyuan_video.model
|
||||||
|
|
||||||
import comfy.model_management
|
import comfy.model_management
|
||||||
import comfy.patcher_extension
|
import comfy.patcher_extension
|
||||||
@ -818,3 +819,21 @@ class LTXV(BaseModel):
|
|||||||
|
|
||||||
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
|
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
|
||||||
return out
|
return out
|
||||||
|
|
||||||
|
class HunyuanVideo(BaseModel):
|
||||||
|
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||||
|
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
|
||||||
|
|
||||||
|
def encode_adm(self, **kwargs):
|
||||||
|
return kwargs["pooled_output"]
|
||||||
|
|
||||||
|
def extra_conds(self, **kwargs):
|
||||||
|
out = super().extra_conds(**kwargs)
|
||||||
|
attention_mask = kwargs.get("attention_mask", None)
|
||||||
|
if attention_mask is not None:
|
||||||
|
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
|
||||||
|
cross_attn = kwargs.get("cross_attn", None)
|
||||||
|
if cross_attn is not None:
|
||||||
|
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||||
|
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 6.0)]))
|
||||||
|
return out
|
||||||
|
@ -133,6 +133,26 @@ def detect_unet_config(state_dict, key_prefix):
|
|||||||
unet_config["image_model"] = "hydit1"
|
unet_config["image_model"] = "hydit1"
|
||||||
return unet_config
|
return unet_config
|
||||||
|
|
||||||
|
if '{}txt_in.individual_token_refiner.blocks.0.norm1.weight'.format(key_prefix) in state_dict_keys: #Hunyuan Video
|
||||||
|
dit_config = {}
|
||||||
|
dit_config["image_model"] = "hunyuan_video"
|
||||||
|
dit_config["in_channels"] = 16
|
||||||
|
dit_config["patch_size"] = [1, 2, 2]
|
||||||
|
dit_config["out_channels"] = 16
|
||||||
|
dit_config["vec_in_dim"] = 768
|
||||||
|
dit_config["context_in_dim"] = 4096
|
||||||
|
dit_config["hidden_size"] = 3072
|
||||||
|
dit_config["mlp_ratio"] = 4.0
|
||||||
|
dit_config["num_heads"] = 24
|
||||||
|
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||||
|
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||||
|
dit_config["axes_dim"] = [16, 56, 56]
|
||||||
|
dit_config["theta"] = 256
|
||||||
|
dit_config["qkv_bias"] = True
|
||||||
|
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
|
||||||
|
dit_config["guidance_embed"] = len(guidance_keys) > 0
|
||||||
|
return dit_config
|
||||||
|
|
||||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys: #Flux
|
||||||
dit_config = {}
|
dit_config = {}
|
||||||
dit_config["image_model"] = "flux"
|
dit_config["image_model"] = "flux"
|
||||||
|
23
comfy/sd.py
23
comfy/sd.py
@ -31,6 +31,7 @@ import comfy.text_encoders.flux
|
|||||||
import comfy.text_encoders.long_clipl
|
import comfy.text_encoders.long_clipl
|
||||||
import comfy.text_encoders.genmo
|
import comfy.text_encoders.genmo
|
||||||
import comfy.text_encoders.lt
|
import comfy.text_encoders.lt
|
||||||
|
import comfy.text_encoders.hunyuan_video
|
||||||
|
|
||||||
import comfy.model_patcher
|
import comfy.model_patcher
|
||||||
import comfy.lora
|
import comfy.lora
|
||||||
@ -306,12 +307,23 @@ class VAE:
|
|||||||
self.upscale_ratio = 4
|
self.upscale_ratio = 4
|
||||||
|
|
||||||
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
|
||||||
if 'quant_conv.weight' in sd:
|
if 'post_quant_conv.weight' in sd:
|
||||||
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||||
else:
|
else:
|
||||||
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.DiagonalGaussianRegularizer"},
|
||||||
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
|
||||||
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
|
||||||
|
elif "decoder.conv_in.conv.weight" in sd:
|
||||||
|
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
|
||||||
|
ddconfig["conv3d"] = True
|
||||||
|
ddconfig["time_compress"] = 4
|
||||||
|
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
|
||||||
|
self.latent_dim = 3
|
||||||
|
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
|
||||||
|
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
|
||||||
|
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
|
||||||
|
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
|
||||||
|
|
||||||
elif "decoder.layers.1.layers.0.beta" in sd:
|
elif "decoder.layers.1.layers.0.beta" in sd:
|
||||||
self.first_stage_model = AudioOobleckVAE()
|
self.first_stage_model = AudioOobleckVAE()
|
||||||
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
|
||||||
@ -544,6 +556,7 @@ class CLIPType(Enum):
|
|||||||
FLUX = 6
|
FLUX = 6
|
||||||
MOCHI = 7
|
MOCHI = 7
|
||||||
LTXV = 8
|
LTXV = 8
|
||||||
|
HUNYUAN_VIDEO = 9
|
||||||
|
|
||||||
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
|
||||||
clip_data = []
|
clip_data = []
|
||||||
@ -559,6 +572,7 @@ class TEModel(Enum):
|
|||||||
T5_XXL = 4
|
T5_XXL = 4
|
||||||
T5_XL = 5
|
T5_XL = 5
|
||||||
T5_BASE = 6
|
T5_BASE = 6
|
||||||
|
LLAMA3_8 = 7
|
||||||
|
|
||||||
def detect_te_model(sd):
|
def detect_te_model(sd):
|
||||||
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
|
||||||
@ -575,6 +589,8 @@ def detect_te_model(sd):
|
|||||||
return TEModel.T5_XL
|
return TEModel.T5_XL
|
||||||
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
|
||||||
return TEModel.T5_BASE
|
return TEModel.T5_BASE
|
||||||
|
if "model.layers.0.post_attention_layernorm.weight" in sd:
|
||||||
|
return TEModel.LLAMA3_8
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
@ -652,6 +668,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
|||||||
elif clip_type == CLIPType.FLUX:
|
elif clip_type == CLIPType.FLUX:
|
||||||
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
clip_target.clip = comfy.text_encoders.flux.flux_clip(**t5xxl_detect(clip_data))
|
||||||
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
clip_target.tokenizer = comfy.text_encoders.flux.FluxTokenizer
|
||||||
|
elif clip_type == CLIPType.HUNYUAN_VIDEO:
|
||||||
|
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip() #TODO
|
||||||
|
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
|
||||||
else:
|
else:
|
||||||
clip_target.clip = sdxl_clip.SDXLClipModel
|
clip_target.clip = sdxl_clip.SDXLClipModel
|
||||||
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
|
||||||
|
@ -420,7 +420,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
|
|||||||
return embed_out
|
return embed_out
|
||||||
|
|
||||||
class SDTokenizer:
|
class SDTokenizer:
|
||||||
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, tokenizer_data={}):
|
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}):
|
||||||
if tokenizer_path is None:
|
if tokenizer_path is None:
|
||||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
|
||||||
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
|
||||||
@ -433,11 +433,16 @@ class SDTokenizer:
|
|||||||
self.tokens_start = 1
|
self.tokens_start = 1
|
||||||
self.start_token = empty[0]
|
self.start_token = empty[0]
|
||||||
if has_end_token:
|
if has_end_token:
|
||||||
self.end_token = empty[1]
|
if end_token is not None:
|
||||||
|
self.end_token = end_token
|
||||||
|
else:
|
||||||
|
self.end_token = empty[1]
|
||||||
else:
|
else:
|
||||||
self.tokens_start = 0
|
self.tokens_start = 0
|
||||||
self.start_token = None
|
self.start_token = None
|
||||||
if has_end_token:
|
if end_token is not None:
|
||||||
|
self.end_token = end_token
|
||||||
|
else:
|
||||||
self.end_token = empty[0]
|
self.end_token = empty[0]
|
||||||
|
|
||||||
if pad_token is not None:
|
if pad_token is not None:
|
||||||
|
@ -12,6 +12,7 @@ import comfy.text_encoders.hydit
|
|||||||
import comfy.text_encoders.flux
|
import comfy.text_encoders.flux
|
||||||
import comfy.text_encoders.genmo
|
import comfy.text_encoders.genmo
|
||||||
import comfy.text_encoders.lt
|
import comfy.text_encoders.lt
|
||||||
|
import comfy.text_encoders.hunyuan_video
|
||||||
|
|
||||||
from . import supported_models_base
|
from . import supported_models_base
|
||||||
from . import latent_formats
|
from . import latent_formats
|
||||||
@ -738,6 +739,54 @@ class LTXV(supported_models_base.BASE):
|
|||||||
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||||
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
|
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
|
||||||
|
|
||||||
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV]
|
class HunyuanVideo(supported_models_base.BASE):
|
||||||
|
unet_config = {
|
||||||
|
"image_model": "hunyuan_video",
|
||||||
|
}
|
||||||
|
|
||||||
|
sampling_settings = {
|
||||||
|
"shift": 7.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
unet_extra_config = {}
|
||||||
|
latent_format = latent_formats.HunyuanVideo
|
||||||
|
|
||||||
|
memory_usage_factor = 2.0 #TODO
|
||||||
|
|
||||||
|
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||||
|
|
||||||
|
vae_key_prefix = ["vae."]
|
||||||
|
text_encoder_key_prefix = ["text_encoders."]
|
||||||
|
|
||||||
|
def get_model(self, state_dict, prefix="", device=None):
|
||||||
|
out = model_base.HunyuanVideo(self, device=device)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def process_unet_state_dict(self, state_dict):
|
||||||
|
out_sd = {}
|
||||||
|
for k in list(state_dict.keys()):
|
||||||
|
key_out = k
|
||||||
|
key_out = key_out.replace("txt_in.t_embedder.mlp.0.", "txt_in.t_embedder.in_layer.").replace("txt_in.t_embedder.mlp.2.", "txt_in.t_embedder.out_layer.")
|
||||||
|
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
|
||||||
|
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
|
||||||
|
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
|
||||||
|
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
|
||||||
|
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
|
||||||
|
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
|
||||||
|
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
|
||||||
|
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
|
||||||
|
out_sd[key_out] = state_dict[k]
|
||||||
|
return out_sd
|
||||||
|
|
||||||
|
def process_unet_state_dict_for_saving(self, state_dict):
|
||||||
|
replace_prefix = {"": "model.model."}
|
||||||
|
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||||
|
|
||||||
|
def clip_target(self, state_dict={}):
|
||||||
|
# pref = self.text_encoder_key_prefix[0]
|
||||||
|
# t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
|
||||||
|
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip()) #TODO
|
||||||
|
|
||||||
|
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo]
|
||||||
|
|
||||||
models += [SVD_img2vid]
|
models += [SVD_img2vid]
|
||||||
|
98
comfy/text_encoders/hunyuan_video.py
Normal file
98
comfy/text_encoders/hunyuan_video.py
Normal file
@ -0,0 +1,98 @@
|
|||||||
|
from comfy import sd1_clip
|
||||||
|
import comfy.model_management
|
||||||
|
import comfy.text_encoders.llama
|
||||||
|
from transformers import LlamaTokenizerFast
|
||||||
|
import torch
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
|
||||||
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
|
||||||
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=True, pad_to_max_length=False, max_length=99999999, pad_token=128258, end_token=128009, min_length=min_length)
|
||||||
|
|
||||||
|
class LLAMAModel(sd1_clip.SDClipModel):
|
||||||
|
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
|
||||||
|
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
|
||||||
|
if llama_scaled_fp8 is not None:
|
||||||
|
model_options = model_options.copy()
|
||||||
|
model_options["scaled_fp8"] = llama_scaled_fp8
|
||||||
|
|
||||||
|
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
|
||||||
|
|
||||||
|
|
||||||
|
class HunyuanVideoTokenizer:
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
|
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
|
||||||
|
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
|
||||||
|
self.llama_template = """<|start_header_id|>system<|end_header_id|>
|
||||||
|
|
||||||
|
Describe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>""" # 93 tokens
|
||||||
|
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
|
||||||
|
|
||||||
|
def tokenize_with_weights(self, text:str, return_word_ids=False):
|
||||||
|
out = {}
|
||||||
|
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||||
|
|
||||||
|
llama_text = "{}{}".format(self.llama_template, text)
|
||||||
|
out["llama"] = self.llama.tokenize_with_weights(llama_text, return_word_ids)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def untokenize(self, token_weight_pair):
|
||||||
|
return self.clip_l.untokenize(token_weight_pair)
|
||||||
|
|
||||||
|
def state_dict(self):
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
class HunyuanVideoClipModel(torch.nn.Module):
|
||||||
|
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
|
||||||
|
super().__init__()
|
||||||
|
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
|
||||||
|
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
|
||||||
|
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
|
||||||
|
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
|
||||||
|
self.dtypes = set([dtype, dtype_llama])
|
||||||
|
|
||||||
|
def set_clip_options(self, options):
|
||||||
|
self.clip_l.set_clip_options(options)
|
||||||
|
self.llama.set_clip_options(options)
|
||||||
|
|
||||||
|
def reset_clip_options(self):
|
||||||
|
self.clip_l.reset_clip_options()
|
||||||
|
self.llama.reset_clip_options()
|
||||||
|
|
||||||
|
def encode_token_weights(self, token_weight_pairs):
|
||||||
|
token_weight_pairs_l = token_weight_pairs["l"]
|
||||||
|
token_weight_pairs_llama = token_weight_pairs["llama"]
|
||||||
|
|
||||||
|
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
|
||||||
|
|
||||||
|
template_end = 0
|
||||||
|
for i, v in enumerate(token_weight_pairs_llama[0]):
|
||||||
|
if v[0] == 128007: # <|end_header_id|>
|
||||||
|
template_end = i
|
||||||
|
|
||||||
|
llama_out = llama_out[:, template_end:]
|
||||||
|
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end:]
|
||||||
|
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
|
||||||
|
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
|
||||||
|
|
||||||
|
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||||
|
return llama_out, l_pooled, llama_extra_out
|
||||||
|
|
||||||
|
def load_sd(self, sd):
|
||||||
|
if "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
|
||||||
|
return self.clip_l.load_sd(sd)
|
||||||
|
else:
|
||||||
|
return self.llama.load_sd(sd)
|
||||||
|
|
||||||
|
|
||||||
|
def hunyuan_video_clip(dtype_llama=None, llama_scaled_fp8=None):
|
||||||
|
class HunyuanVideoClipModel_(HunyuanVideoClipModel):
|
||||||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||||
|
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
|
||||||
|
model_options = model_options.copy()
|
||||||
|
model_options["llama_scaled_fp8"] = llama_scaled_fp8
|
||||||
|
super().__init__(dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
|
||||||
|
return HunyuanVideoClipModel_
|
221
comfy/text_encoders/llama.py
Normal file
221
comfy/text_encoders/llama.py
Normal file
@ -0,0 +1,221 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Optional, Any
|
||||||
|
|
||||||
|
from comfy.ldm.modules.attention import optimized_attention
|
||||||
|
import comfy.model_management
|
||||||
|
import comfy.ldm.common_dit
|
||||||
|
|
||||||
|
import comfy.model_management
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Llama2Config:
|
||||||
|
vocab_size: int = 128320
|
||||||
|
hidden_size: int = 4096
|
||||||
|
intermediate_size: int = 14336
|
||||||
|
num_hidden_layers: int = 32
|
||||||
|
num_attention_heads: int = 32
|
||||||
|
num_key_value_heads: int = 8
|
||||||
|
max_position_embeddings: int = 8192
|
||||||
|
rms_norm_eps: float = 1e-5
|
||||||
|
rope_theta: float = 500000.0
|
||||||
|
|
||||||
|
class RMSNorm(nn.Module):
|
||||||
|
def __init__(self, dim: int, eps: float = 1e-5, device=None, dtype=None):
|
||||||
|
super().__init__()
|
||||||
|
self.eps = eps
|
||||||
|
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
|
||||||
|
|
||||||
|
|
||||||
|
def rotate_half(x):
|
||||||
|
"""Rotates half the hidden dims of the input."""
|
||||||
|
x1 = x[..., : x.shape[-1] // 2]
|
||||||
|
x2 = x[..., x.shape[-1] // 2 :]
|
||||||
|
return torch.cat((-x2, x1), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
|
||||||
|
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
|
||||||
|
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
|
||||||
|
|
||||||
|
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
|
||||||
|
|
||||||
|
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
||||||
|
position_ids_expanded = position_ids[:, None, :].float()
|
||||||
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
||||||
|
emb = torch.cat((freqs, freqs), dim=-1)
|
||||||
|
cos = emb.cos()
|
||||||
|
sin = emb.sin()
|
||||||
|
return (cos, sin)
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rope(xq, xk, freqs_cis):
|
||||||
|
cos = freqs_cis[0].unsqueeze(1)
|
||||||
|
sin = freqs_cis[1].unsqueeze(1)
|
||||||
|
q_embed = (xq * cos) + (rotate_half(xq) * sin)
|
||||||
|
k_embed = (xk * cos) + (rotate_half(xk) * sin)
|
||||||
|
return q_embed, k_embed
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||||
|
super().__init__()
|
||||||
|
self.num_heads = config.num_attention_heads
|
||||||
|
self.num_kv_heads = config.num_key_value_heads
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
self.head_dim = self.hidden_size // self.num_heads
|
||||||
|
|
||||||
|
ops = ops or nn
|
||||||
|
self.q_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||||
|
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
|
||||||
|
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
|
||||||
|
self.o_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
freqs_cis: Optional[torch.Tensor] = None,
|
||||||
|
):
|
||||||
|
batch_size, seq_length, _ = hidden_states.shape
|
||||||
|
|
||||||
|
xq = self.q_proj(hidden_states)
|
||||||
|
xk = self.k_proj(hidden_states)
|
||||||
|
xv = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
xq = xq.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
xk = xk.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||||
|
xv = xv.view(batch_size, seq_length, self.num_kv_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
|
||||||
|
|
||||||
|
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
|
||||||
|
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
|
||||||
|
|
||||||
|
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
|
||||||
|
return self.o_proj(output)
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||||
|
super().__init__()
|
||||||
|
ops = ops or nn
|
||||||
|
self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
|
||||||
|
self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
|
||||||
|
self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
|
||||||
|
|
||||||
|
class TransformerBlock(nn.Module):
|
||||||
|
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
|
||||||
|
super().__init__()
|
||||||
|
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
|
||||||
|
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
|
||||||
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
|
||||||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
freqs_cis: Optional[torch.Tensor] = None,
|
||||||
|
):
|
||||||
|
# Self Attention
|
||||||
|
residual = x
|
||||||
|
x = self.input_layernorm(x)
|
||||||
|
x = self.self_attn(
|
||||||
|
hidden_states=x,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
freqs_cis=freqs_cis,
|
||||||
|
)
|
||||||
|
x = residual + x
|
||||||
|
|
||||||
|
# MLP
|
||||||
|
residual = x
|
||||||
|
x = self.post_attention_layernorm(x)
|
||||||
|
x = self.mlp(x)
|
||||||
|
x = residual + x
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
class Llama2_(nn.Module):
|
||||||
|
def __init__(self, config, device=None, dtype=None, ops=None):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.vocab_size = config.vocab_size
|
||||||
|
|
||||||
|
self.embed_tokens = ops.Embedding(
|
||||||
|
config.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
device=device,
|
||||||
|
dtype=dtype
|
||||||
|
)
|
||||||
|
self.layers = nn.ModuleList([
|
||||||
|
TransformerBlock(config, device=device, dtype=dtype, ops=ops)
|
||||||
|
for _ in range(config.num_hidden_layers)
|
||||||
|
])
|
||||||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
|
||||||
|
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
|
||||||
|
|
||||||
|
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
|
||||||
|
x = self.embed_tokens(x, out_dtype=dtype)
|
||||||
|
|
||||||
|
freqs_cis = precompute_freqs_cis(self.config.hidden_size // self.config.num_attention_heads,
|
||||||
|
x.shape[1],
|
||||||
|
self.config.rope_theta,
|
||||||
|
device=x.device)
|
||||||
|
|
||||||
|
mask = None
|
||||||
|
if attention_mask is not None:
|
||||||
|
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
|
||||||
|
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
|
||||||
|
|
||||||
|
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
|
||||||
|
if mask is not None:
|
||||||
|
mask += causal_mask
|
||||||
|
else:
|
||||||
|
mask = causal_mask
|
||||||
|
|
||||||
|
intermediate = None
|
||||||
|
if intermediate_output is not None:
|
||||||
|
if intermediate_output < 0:
|
||||||
|
intermediate_output = len(self.layers) + intermediate_output
|
||||||
|
|
||||||
|
for i, layer in enumerate(self.layers):
|
||||||
|
x = layer(
|
||||||
|
x=x,
|
||||||
|
attention_mask=mask,
|
||||||
|
freqs_cis=freqs_cis,
|
||||||
|
)
|
||||||
|
if i == intermediate_output:
|
||||||
|
intermediate = x.clone()
|
||||||
|
|
||||||
|
x = self.norm(x)
|
||||||
|
if intermediate is not None and final_layer_norm_intermediate:
|
||||||
|
intermediate = self.norm(intermediate)
|
||||||
|
|
||||||
|
return x, intermediate
|
||||||
|
|
||||||
|
|
||||||
|
class Llama2(torch.nn.Module):
|
||||||
|
def __init__(self, config_dict, dtype, device, operations):
|
||||||
|
super().__init__()
|
||||||
|
config = Llama2Config(**config_dict)
|
||||||
|
self.num_layers = config.num_hidden_layers
|
||||||
|
|
||||||
|
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
|
||||||
|
self.dtype = dtype
|
||||||
|
|
||||||
|
def get_input_embeddings(self):
|
||||||
|
return self.model.embed_tokens
|
||||||
|
|
||||||
|
def set_input_embeddings(self, embeddings):
|
||||||
|
self.model.embed_tokens = embeddings
|
||||||
|
|
||||||
|
def forward(self, input_ids, *args, **kwargs):
|
||||||
|
return self.model(input_ids, *args, **kwargs)
|
410579
comfy/text_encoders/llama_tokenizer/tokenizer.json
Normal file
410579
comfy/text_encoders/llama_tokenizer/tokenizer.json
Normal file
File diff suppressed because it is too large
Load Diff
2095
comfy/text_encoders/llama_tokenizer/tokenizer_config.json
Normal file
2095
comfy/text_encoders/llama_tokenizer/tokenizer_config.json
Normal file
File diff suppressed because it is too large
Load Diff
@ -17,7 +17,23 @@ class CLIPTextEncodeHunyuanDiT:
|
|||||||
|
|
||||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||||
|
|
||||||
|
class EmptyHunyuanLatentVideo:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "width": ("INT", {"default": 848, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||||
|
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||||
|
"length": ("INT", {"default": 25, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
|
||||||
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
|
||||||
|
RETURN_TYPES = ("LATENT",)
|
||||||
|
FUNCTION = "generate"
|
||||||
|
|
||||||
|
CATEGORY = "latent/video"
|
||||||
|
|
||||||
|
def generate(self, width, height, length, batch_size=1):
|
||||||
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||||
|
return ({"samples":latent}, )
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
|
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
|
||||||
|
"EmptyHunyuanLatentVideo": EmptyHunyuanLatentVideo,
|
||||||
}
|
}
|
||||||
|
4
nodes.py
4
nodes.py
@ -929,7 +929,7 @@ class DualCLIPLoader:
|
|||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
|
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
|
||||||
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
|
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
|
||||||
"type": (["sdxl", "sd3", "flux"], ),
|
"type": (["sdxl", "sd3", "flux", "hunyuan_video"], ),
|
||||||
}}
|
}}
|
||||||
RETURN_TYPES = ("CLIP",)
|
RETURN_TYPES = ("CLIP",)
|
||||||
FUNCTION = "load_clip"
|
FUNCTION = "load_clip"
|
||||||
@ -947,6 +947,8 @@ class DualCLIPLoader:
|
|||||||
clip_type = comfy.sd.CLIPType.SD3
|
clip_type = comfy.sd.CLIPType.SD3
|
||||||
elif type == "flux":
|
elif type == "flux":
|
||||||
clip_type = comfy.sd.CLIPType.FLUX
|
clip_type = comfy.sd.CLIPType.FLUX
|
||||||
|
elif type == "hunyuan_video":
|
||||||
|
clip_type = comfy.sd.CLIPType.HUNYUAN_VIDEO
|
||||||
|
|
||||||
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type)
|
||||||
return (clip,)
|
return (clip,)
|
||||||
|
Loading…
Reference in New Issue
Block a user