Add a LatentCrop node.

This commit is contained in:
comfyanonymous 2023-02-04 15:21:46 -05:00
parent 43c795f462
commit bff0e11941

View File

@ -283,6 +283,47 @@ class LatentComposite:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
return (s,)
class LatentCrop:
@classmethod
def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT",),
"width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
"x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
"y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "crop"
CATEGORY = "latent"
def crop(self, samples, width, height, x, y):
x = x // 8
y = y // 8
#enfonce minimum size of 64
if x > (samples.shape[3] - 8):
x = samples.shape[3] - 8
if y > (samples.shape[2] - 8):
y = samples.shape[2] - 8
new_height = height // 8
new_width = width // 8
to_x = new_width + x
to_y = new_height + y
def enforce_image_dim(d, to_d, max_d):
if to_d > max_d:
leftover = (to_d - max_d) % 8
to_d = max_d
d -= leftover
return (d, to_d)
#make sure size is always multiple of 64
x, to_x = enforce_image_dim(x, to_x, samples.shape[3])
y, to_y = enforce_image_dim(y, to_y, samples.shape[2])
s = samples[:,:,y:to_y, x:to_x]
return (s,)
def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
@ -483,6 +524,7 @@ NODE_CLASS_MAPPINGS = {
"LatentComposite": LatentComposite,
"LatentRotate": LatentRotate,
"LatentFlip": LatentFlip,
"LatentCrop": LatentCrop,
"LoraLoader": LoraLoader,
}