mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-10 18:05:16 +00:00
Support ascend npu (#5436)
* support ascend npu Co-authored-by: YukMingLaw <lymmm2@163.com> Co-authored-by: starmountain1997 <guozr1997@hotmail.com> Co-authored-by: Ginray <ginray0215@gmail.com>
This commit is contained in:
parent
ee9547ba31
commit
c4bfdba330
10
README.md
10
README.md
@ -224,6 +224,16 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
|
||||
|
||||
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
|
||||
|
||||
#### Ascend NPUs
|
||||
|
||||
For models compatible with Ascend Extension for PyTorch (torch_npu). To get started, ensure your environment meets the prerequisites outlined on the [installation](https://ascend.github.io/docs/sources/ascend/quick_install.html) page. Here's a step-by-step guide tailored to your platform and installation method:
|
||||
|
||||
1. Begin by installing the recommended or newer kernel version for Linux as specified in the Installation page of torch-npu, if necessary.
|
||||
2. Proceed with the installation of Ascend Basekit, which includes the driver, firmware, and CANN, following the instructions provided for your specific platform.
|
||||
3. Next, install the necessary packages for torch-npu by adhering to the platform-specific instructions on the [Installation](https://ascend.github.io/docs/sources/pytorch/install.html#pytorch) page.
|
||||
4. Finally, adhere to the [ComfyUI manual installation](#manual-install-windows-linux) guide for Linux. Once all components are installed, you can run ComfyUI as described earlier.
|
||||
|
||||
|
||||
# Running
|
||||
|
||||
```python main.py```
|
||||
|
@ -86,6 +86,13 @@ try:
|
||||
except:
|
||||
pass
|
||||
|
||||
try:
|
||||
import torch_npu
|
||||
_ = torch.npu.device_count()
|
||||
npu_available = torch.npu.is_available()
|
||||
except:
|
||||
npu_available = False
|
||||
|
||||
if args.cpu:
|
||||
cpu_state = CPUState.CPU
|
||||
|
||||
@ -97,6 +104,12 @@ def is_intel_xpu():
|
||||
return True
|
||||
return False
|
||||
|
||||
def is_ascend_npu():
|
||||
global npu_available
|
||||
if npu_available:
|
||||
return True
|
||||
return False
|
||||
|
||||
def get_torch_device():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
@ -110,6 +123,8 @@ def get_torch_device():
|
||||
else:
|
||||
if is_intel_xpu():
|
||||
return torch.device("xpu", torch.xpu.current_device())
|
||||
elif is_ascend_npu():
|
||||
return torch.device("npu", torch.npu.current_device())
|
||||
else:
|
||||
return torch.device(torch.cuda.current_device())
|
||||
|
||||
@ -130,6 +145,12 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_total_torch = mem_reserved
|
||||
mem_total = torch.xpu.get_device_properties(dev).total_memory
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
_, mem_total_npu = torch.npu.mem_get_info(dev)
|
||||
mem_total_torch = mem_reserved
|
||||
mem_total = mem_total_npu
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
@ -209,7 +230,7 @@ try:
|
||||
if int(torch_version[0]) >= 2:
|
||||
if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
if is_intel_xpu():
|
||||
if is_intel_xpu() or is_ascend_npu():
|
||||
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
|
||||
ENABLE_PYTORCH_ATTENTION = True
|
||||
except:
|
||||
@ -274,6 +295,8 @@ def get_torch_device_name(device):
|
||||
return "{}".format(device.type)
|
||||
elif is_intel_xpu():
|
||||
return "{} {}".format(device, torch.xpu.get_device_name(device))
|
||||
elif is_ascend_npu():
|
||||
return "{} {}".format(device, torch.npu.get_device_name(device))
|
||||
else:
|
||||
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device))
|
||||
|
||||
@ -860,6 +883,8 @@ def xformers_enabled():
|
||||
return False
|
||||
if is_intel_xpu():
|
||||
return False
|
||||
if is_ascend_npu():
|
||||
return False
|
||||
if directml_enabled:
|
||||
return False
|
||||
return XFORMERS_IS_AVAILABLE
|
||||
@ -884,6 +909,8 @@ def pytorch_attention_flash_attention():
|
||||
return True
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
return False
|
||||
|
||||
def mac_version():
|
||||
@ -923,6 +950,13 @@ def get_free_memory(dev=None, torch_free_too=False):
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved
|
||||
mem_free_total = mem_free_xpu + mem_free_torch
|
||||
elif is_ascend_npu():
|
||||
stats = torch.npu.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_npu, _ = torch.npu.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_npu + mem_free_torch
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
@ -984,6 +1018,9 @@ def should_use_fp16(device=None, model_params=0, prioritize_performance=True, ma
|
||||
if is_intel_xpu():
|
||||
return True
|
||||
|
||||
if is_ascend_npu():
|
||||
return True
|
||||
|
||||
if torch.version.hip:
|
||||
return True
|
||||
|
||||
@ -1081,6 +1118,8 @@ def soft_empty_cache(force=False):
|
||||
torch.mps.empty_cache()
|
||||
elif is_intel_xpu():
|
||||
torch.xpu.empty_cache()
|
||||
elif is_ascend_npu():
|
||||
torch.npu.empty_cache()
|
||||
elif torch.cuda.is_available():
|
||||
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda
|
||||
torch.cuda.empty_cache()
|
||||
|
Loading…
Reference in New Issue
Block a user