Refactor more code to sample.py

This commit is contained in:
comfyanonymous 2023-04-24 23:25:51 -04:00
parent 7983b3a975
commit c50208a703
2 changed files with 40 additions and 35 deletions

View File

@ -1,5 +1,6 @@
import torch
import comfy.model_management
import comfy.samplers
def prepare_noise(latent_image, seed, skip=0):
@ -13,24 +14,22 @@ def prepare_noise(latent_image, seed, skip=0):
noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")
return noise
def prepare_mask(noise_mask, noise):
def prepare_mask(noise_mask, shape, device):
"""ensures noise mask is of proper dimensions"""
device = comfy.model_management.get_torch_device()
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(noise.shape[2], noise.shape[3]), mode="bilinear")
noise_mask = torch.nn.functional.interpolate(noise_mask[None,None,], size=(shape[2], shape[3]), mode="bilinear")
noise_mask = noise_mask.round()
noise_mask = torch.cat([noise_mask] * noise.shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * noise.shape[0])
noise_mask = torch.cat([noise_mask] * shape[1], dim=1)
noise_mask = torch.cat([noise_mask] * shape[0])
noise_mask = noise_mask.to(device)
return noise_mask
def broadcast_cond(cond, noise):
"""broadcasts conditioning to the noise batch size"""
device = comfy.model_management.get_torch_device()
def broadcast_cond(cond, batch, device):
"""broadcasts conditioning to the batch size"""
copy = []
for p in cond:
t = p[0]
if t.shape[0] < noise.shape[0]:
t = torch.cat([t] * noise.shape[0])
if t.shape[0] < batch:
t = torch.cat([t] * batch)
t = t.to(device)
copy += [[t] + p[1:]]
return copy
@ -55,3 +54,29 @@ def cleanup_additional_models(models):
"""cleanup additional models that were loaded"""
for m in models:
m.cleanup()
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None):
device = comfy.model_management.get_torch_device()
if noise_mask is not None:
noise_mask = prepare_mask(noise_mask, noise.shape, device)
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = broadcast_cond(positive, noise.shape[0], device)
negative_copy = broadcast_cond(negative, noise.shape[0], device)
models = load_additional_models(positive, negative)
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas)
samples = samples.cpu()
cleanup_additional_models(models)
return samples

View File

@ -752,31 +752,11 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
noise_mask = None
if "noise_mask" in latent:
noise_mask = comfy.sample.prepare_mask(latent["noise_mask"], noise)
real_model = None
comfy.model_management.load_model_gpu(model)
real_model = model.model
noise = noise.to(device)
latent_image = latent_image.to(device)
positive_copy = comfy.sample.broadcast_cond(positive, noise)
negative_copy = comfy.sample.broadcast_cond(negative, noise)
models = comfy.sample.load_additional_models(positive, negative)
if sampler_name in comfy.samplers.KSampler.SAMPLERS:
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
else:
#other samplers
pass
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask)
samples = samples.cpu()
comfy.sample.cleanup_additional_models(models)
noise_mask = latent["noise_mask"]
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
force_full_denoise=force_full_denoise, noise_mask=noise_mask)
out = latent.copy()
out["samples"] = samples
return (out, )