Add taesd and taesdxl to VAELoader node.

They will show up if both the taesd_encoder and taesd_decoder or taesdxl
model files are present in the models/vae_approx directory.
This commit is contained in:
comfyanonymous 2023-11-21 12:54:19 -05:00
parent 6ff06fa796
commit cd4fc77d5f
4 changed files with 79 additions and 17 deletions

View File

@ -23,6 +23,7 @@ import comfy.model_patcher
import comfy.lora import comfy.lora
import comfy.t2i_adapter.adapter import comfy.t2i_adapter.adapter
import comfy.supported_models_base import comfy.supported_models_base
import comfy.taesd.taesd
def load_model_weights(model, sd): def load_model_weights(model, sd):
m, u = model.load_state_dict(sd, strict=False) m, u = model.load_state_dict(sd, strict=False)
@ -154,10 +155,16 @@ class VAE:
if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format if 'decoder.up_blocks.0.resnets.0.norm1.weight' in sd.keys(): #diffusers format
sd = diffusers_convert.convert_vae_state_dict(sd) sd = diffusers_convert.convert_vae_state_dict(sd)
self.memory_used_encode = lambda shape: (2078 * shape[2] * shape[3]) * 1.7 #These are for AutoencoderKL and need tweaking
self.memory_used_decode = lambda shape: (2562 * shape[2] * shape[3] * 64) * 1.7
if config is None: if config is None:
#default SD1.x/SD2.x VAE parameters if "taesd_decoder.1.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0} self.first_stage_model = comfy.taesd.taesd.TAESD()
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4) else:
#default SD1.x/SD2.x VAE parameters
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=4)
else: else:
self.first_stage_model = AutoencoderKL(**(config['params'])) self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval() self.first_stage_model = self.first_stage_model.eval()
@ -206,7 +213,7 @@ class VAE:
def decode(self, samples_in): def decode(self, samples_in):
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
try: try:
memory_used = (2562 * samples_in.shape[2] * samples_in.shape[3] * 64) * 1.7 memory_used = self.memory_used_decode(samples_in.shape)
model_management.free_memory(memory_used, self.device) model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used) batch_number = int(free_memory / memory_used)
@ -234,7 +241,7 @@ class VAE:
self.first_stage_model = self.first_stage_model.to(self.device) self.first_stage_model = self.first_stage_model.to(self.device)
pixel_samples = pixel_samples.movedim(-1,1) pixel_samples = pixel_samples.movedim(-1,1)
try: try:
memory_used = (2078 * pixel_samples.shape[2] * pixel_samples.shape[3]) * 1.7 #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change. memory_used = self.memory_used_encode(pixel_samples.shape) #NOTE: this constant along with the one in the decode above are estimated from the mem usage for the VAE and could change.
model_management.free_memory(memory_used, self.device) model_management.free_memory(memory_used, self.device)
free_memory = model_management.get_free_memory(self.device) free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used) batch_number = int(free_memory / memory_used)

View File

@ -46,15 +46,16 @@ class TAESD(nn.Module):
latent_magnitude = 3 latent_magnitude = 3
latent_shift = 0.5 latent_shift = 0.5
def __init__(self, encoder_path="taesd_encoder.pth", decoder_path="taesd_decoder.pth"): def __init__(self, encoder_path=None, decoder_path=None):
"""Initialize pretrained TAESD on the given device from the given checkpoints.""" """Initialize pretrained TAESD on the given device from the given checkpoints."""
super().__init__() super().__init__()
self.encoder = Encoder() self.taesd_encoder = Encoder()
self.decoder = Decoder() self.taesd_decoder = Decoder()
self.vae_scale = torch.nn.Parameter(torch.tensor(1.0))
if encoder_path is not None: if encoder_path is not None:
self.encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True)) self.taesd_encoder.load_state_dict(comfy.utils.load_torch_file(encoder_path, safe_load=True))
if decoder_path is not None: if decoder_path is not None:
self.decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True)) self.taesd_decoder.load_state_dict(comfy.utils.load_torch_file(decoder_path, safe_load=True))
@staticmethod @staticmethod
def scale_latents(x): def scale_latents(x):
@ -65,3 +66,11 @@ class TAESD(nn.Module):
def unscale_latents(x): def unscale_latents(x):
"""[0, 1] -> raw latents""" """[0, 1] -> raw latents"""
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude) return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
def decode(self, x):
x_sample = self.taesd_decoder(x * self.vae_scale)
x_sample = x_sample.sub(0.5).mul(2)
return x_sample
def encode(self, x):
return self.taesd_encoder(x * 0.5 + 0.5) / self.vae_scale

View File

@ -22,10 +22,7 @@ class TAESDPreviewerImpl(LatentPreviewer):
self.taesd = taesd self.taesd = taesd
def decode_latent_to_preview(self, x0): def decode_latent_to_preview(self, x0):
x_sample = self.taesd.decoder(x0[:1])[0].detach() x_sample = self.taesd.decode(x0[:1])[0].detach()
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
x_sample = x_sample.sub(0.5).mul(2)
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0) x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8) x_sample = x_sample.astype(np.uint8)

View File

@ -573,9 +573,55 @@ class LoraLoader:
return (model_lora, clip_lora) return (model_lora, clip_lora)
class VAELoader: class VAELoader:
@staticmethod
def vae_list():
vaes = folder_paths.get_filename_list("vae")
approx_vaes = folder_paths.get_filename_list("vae_approx")
sdxl_taesd_enc = False
sdxl_taesd_dec = False
sd1_taesd_enc = False
sd1_taesd_dec = False
for v in approx_vaes:
if v.startswith("taesd_decoder."):
sd1_taesd_dec = True
elif v.startswith("taesd_encoder."):
sd1_taesd_enc = True
elif v.startswith("taesdxl_decoder."):
sdxl_taesd_dec = True
elif v.startswith("taesdxl_encoder."):
sdxl_taesd_enc = True
if sd1_taesd_dec and sd1_taesd_enc:
vaes.append("taesd")
if sdxl_taesd_dec and sdxl_taesd_enc:
vaes.append("taesdxl")
return vaes
@staticmethod
def load_taesd(name):
sd = {}
approx_vaes = folder_paths.get_filename_list("vae_approx")
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
enc = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", encoder))
for k in enc:
sd["taesd_encoder.{}".format(k)] = enc[k]
dec = comfy.utils.load_torch_file(folder_paths.get_full_path("vae_approx", decoder))
for k in dec:
sd["taesd_decoder.{}".format(k)] = dec[k]
if name == "taesd":
sd["vae_scale"] = torch.tensor(0.18215)
elif name == "taesdxl":
sd["vae_scale"] = torch.tensor(0.13025)
return sd
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}} return {"required": { "vae_name": (s.vae_list(), )}}
RETURN_TYPES = ("VAE",) RETURN_TYPES = ("VAE",)
FUNCTION = "load_vae" FUNCTION = "load_vae"
@ -583,8 +629,11 @@ class VAELoader:
#TODO: scale factor? #TODO: scale factor?
def load_vae(self, vae_name): def load_vae(self, vae_name):
vae_path = folder_paths.get_full_path("vae", vae_name) if vae_name in ["taesd", "taesdxl"]:
sd = comfy.utils.load_torch_file(vae_path) sd = self.load_taesd(vae_name)
else:
vae_path = folder_paths.get_full_path("vae", vae_name)
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd) vae = comfy.sd.VAE(sd=sd)
return (vae,) return (vae,)