mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Support loading long clipl model with the CLIP loader node.
This commit is contained in:
parent
83dbac28eb
commit
d1a6bd6845
@ -88,10 +88,11 @@ class CLIPTextModel_(torch.nn.Module):
|
|||||||
heads = config_dict["num_attention_heads"]
|
heads = config_dict["num_attention_heads"]
|
||||||
intermediate_size = config_dict["intermediate_size"]
|
intermediate_size = config_dict["intermediate_size"]
|
||||||
intermediate_activation = config_dict["hidden_act"]
|
intermediate_activation = config_dict["hidden_act"]
|
||||||
|
num_positions = config_dict["max_position_embeddings"]
|
||||||
self.eos_token_id = config_dict["eos_token_id"]
|
self.eos_token_id = config_dict["eos_token_id"]
|
||||||
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.embeddings = CLIPEmbeddings(embed_dim, dtype=dtype, device=device, operations=operations)
|
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
|
||||||
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
|
||||||
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
|
||||||
|
|
||||||
|
@ -24,6 +24,7 @@ import comfy.text_encoders.sa_t5
|
|||||||
import comfy.text_encoders.aura_t5
|
import comfy.text_encoders.aura_t5
|
||||||
import comfy.text_encoders.hydit
|
import comfy.text_encoders.hydit
|
||||||
import comfy.text_encoders.flux
|
import comfy.text_encoders.flux
|
||||||
|
import comfy.text_encoders.long_clipl
|
||||||
|
|
||||||
import comfy.model_patcher
|
import comfy.model_patcher
|
||||||
import comfy.lora
|
import comfy.lora
|
||||||
@ -442,6 +443,11 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
|
|||||||
elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
|
elif "encoder.block.0.layer.0.SelfAttention.k.weight" in clip_data[0]:
|
||||||
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
|
||||||
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
|
||||||
|
else:
|
||||||
|
w = clip_data[0].get("text_model.embeddings.position_embedding.weight", None)
|
||||||
|
if w is not None and w.shape[0] == 248:
|
||||||
|
clip_target.clip = comfy.text_encoders.long_clipl.LongClipModel
|
||||||
|
clip_target.tokenizer = comfy.text_encoders.long_clipl.LongClipTokenizer
|
||||||
else:
|
else:
|
||||||
clip_target.clip = sd1_clip.SD1ClipModel
|
clip_target.clip = sd1_clip.SD1ClipModel
|
||||||
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
clip_target.tokenizer = sd1_clip.SD1Tokenizer
|
||||||
|
25
comfy/text_encoders/long_clipl.json
Normal file
25
comfy/text_encoders/long_clipl.json
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
{
|
||||||
|
"_name_or_path": "openai/clip-vit-large-patch14",
|
||||||
|
"architectures": [
|
||||||
|
"CLIPTextModel"
|
||||||
|
],
|
||||||
|
"attention_dropout": 0.0,
|
||||||
|
"bos_token_id": 0,
|
||||||
|
"dropout": 0.0,
|
||||||
|
"eos_token_id": 49407,
|
||||||
|
"hidden_act": "quick_gelu",
|
||||||
|
"hidden_size": 768,
|
||||||
|
"initializer_factor": 1.0,
|
||||||
|
"initializer_range": 0.02,
|
||||||
|
"intermediate_size": 3072,
|
||||||
|
"layer_norm_eps": 1e-05,
|
||||||
|
"max_position_embeddings": 248,
|
||||||
|
"model_type": "clip_text_model",
|
||||||
|
"num_attention_heads": 12,
|
||||||
|
"num_hidden_layers": 12,
|
||||||
|
"pad_token_id": 1,
|
||||||
|
"projection_dim": 768,
|
||||||
|
"torch_dtype": "float32",
|
||||||
|
"transformers_version": "4.24.0",
|
||||||
|
"vocab_size": 49408
|
||||||
|
}
|
19
comfy/text_encoders/long_clipl.py
Normal file
19
comfy/text_encoders/long_clipl.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
from comfy import sd1_clip
|
||||||
|
import os
|
||||||
|
|
||||||
|
class LongClipTokenizer_(sd1_clip.SDTokenizer):
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
|
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||||
|
|
||||||
|
class LongClipModel_(sd1_clip.SDClipModel):
|
||||||
|
def __init__(self, device="cpu", dtype=None, model_options={}):
|
||||||
|
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
|
||||||
|
super().__init__(device=device, textmodel_json_config=textmodel_json_config, return_projected_pooled=False, dtype=dtype, model_options=model_options)
|
||||||
|
|
||||||
|
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
|
||||||
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
|
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
|
||||||
|
|
||||||
|
class LongClipModel(sd1_clip.SD1ClipModel):
|
||||||
|
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
|
||||||
|
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
|
@ -15,7 +15,7 @@ class T5XXLModel(sd1_clip.SDClipModel):
|
|||||||
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
class T5XXLTokenizer(sd1_clip.SDTokenizer):
|
||||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||||
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
|
||||||
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
|
||||||
|
|
||||||
|
|
||||||
class SD3Tokenizer:
|
class SD3Tokenizer:
|
||||||
|
Loading…
Reference in New Issue
Block a user