mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Properly disable all progress bars when disable_pbar=True
This commit is contained in:
parent
cb3772bbfa
commit
d3293c8339
@ -712,7 +712,7 @@ class UniPC:
|
|||||||
|
|
||||||
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
def sample(self, x, timesteps, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
||||||
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
|
||||||
atol=0.0078, rtol=0.05, corrector=False, callback=None
|
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
|
||||||
):
|
):
|
||||||
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
||||||
t_T = self.noise_schedule.T if t_start is None else t_start
|
t_T = self.noise_schedule.T if t_start is None else t_start
|
||||||
@ -723,7 +723,7 @@ class UniPC:
|
|||||||
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
# timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
||||||
assert timesteps.shape[0] - 1 == steps
|
assert timesteps.shape[0] - 1 == steps
|
||||||
# with torch.no_grad():
|
# with torch.no_grad():
|
||||||
for step_index in trange(steps):
|
for step_index in trange(steps, disable=disable_pbar):
|
||||||
if self.noise_mask is not None:
|
if self.noise_mask is not None:
|
||||||
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
|
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
|
||||||
if step_index == 0:
|
if step_index == 0:
|
||||||
@ -835,7 +835,7 @@ def expand_dims(v, dims):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=None, noise_mask=None, variant='bh1'):
|
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
|
||||||
to_zero = False
|
to_zero = False
|
||||||
if sigmas[-1] == 0:
|
if sigmas[-1] == 0:
|
||||||
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
|
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
|
||||||
@ -879,7 +879,7 @@ def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, ex
|
|||||||
|
|
||||||
order = min(3, len(timesteps) - 1)
|
order = min(3, len(timesteps) - 1)
|
||||||
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
|
||||||
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback)
|
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
|
||||||
if not to_zero:
|
if not to_zero:
|
||||||
x /= ns.marginal_alpha(timesteps[-1])
|
x /= ns.marginal_alpha(timesteps[-1])
|
||||||
return x
|
return x
|
||||||
|
@ -81,6 +81,7 @@ class DDIMSampler(object):
|
|||||||
extra_args=None,
|
extra_args=None,
|
||||||
to_zero=True,
|
to_zero=True,
|
||||||
end_step=None,
|
end_step=None,
|
||||||
|
disable_pbar=False,
|
||||||
**kwargs
|
**kwargs
|
||||||
):
|
):
|
||||||
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
|
self.make_schedule_timesteps(ddim_timesteps=ddim_timesteps, ddim_eta=eta, verbose=verbose)
|
||||||
@ -103,7 +104,8 @@ class DDIMSampler(object):
|
|||||||
denoise_function=denoise_function,
|
denoise_function=denoise_function,
|
||||||
extra_args=extra_args,
|
extra_args=extra_args,
|
||||||
to_zero=to_zero,
|
to_zero=to_zero,
|
||||||
end_step=end_step
|
end_step=end_step,
|
||||||
|
disable_pbar=disable_pbar
|
||||||
)
|
)
|
||||||
return samples, intermediates
|
return samples, intermediates
|
||||||
|
|
||||||
@ -185,7 +187,7 @@ class DDIMSampler(object):
|
|||||||
mask=None, x0=None, img_callback=None, log_every_t=100,
|
mask=None, x0=None, img_callback=None, log_every_t=100,
|
||||||
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
|
||||||
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None):
|
ucg_schedule=None, denoise_function=None, extra_args=None, to_zero=True, end_step=None, disable_pbar=False):
|
||||||
device = self.model.betas.device
|
device = self.model.betas.device
|
||||||
b = shape[0]
|
b = shape[0]
|
||||||
if x_T is None:
|
if x_T is None:
|
||||||
@ -204,7 +206,7 @@ class DDIMSampler(object):
|
|||||||
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
|
||||||
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
# print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||||
|
|
||||||
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step)
|
iterator = tqdm(time_range[:end_step], desc='DDIM Sampler', total=end_step, disable=disable_pbar)
|
||||||
|
|
||||||
for i, step in enumerate(iterator):
|
for i, step in enumerate(iterator):
|
||||||
index = total_steps - i - 1
|
index = total_steps - i - 1
|
||||||
|
@ -56,7 +56,7 @@ def cleanup_additional_models(models):
|
|||||||
for m in models:
|
for m in models:
|
||||||
m.cleanup()
|
m.cleanup()
|
||||||
|
|
||||||
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None):
|
def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False, noise_mask=None, sigmas=None, callback=None, disable_pbar=False):
|
||||||
device = comfy.model_management.get_torch_device()
|
device = comfy.model_management.get_torch_device()
|
||||||
|
|
||||||
if noise_mask is not None:
|
if noise_mask is not None:
|
||||||
@ -76,7 +76,7 @@ def sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative
|
|||||||
|
|
||||||
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise, model_options=model.model_options)
|
||||||
|
|
||||||
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback)
|
samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise, denoise_mask=noise_mask, sigmas=sigmas, callback=callback, disable_pbar=disable_pbar)
|
||||||
samples = samples.cpu()
|
samples = samples.cpu()
|
||||||
|
|
||||||
cleanup_additional_models(models)
|
cleanup_additional_models(models)
|
||||||
|
@ -643,7 +643,8 @@ class KSampler:
|
|||||||
extra_args=extra_args,
|
extra_args=extra_args,
|
||||||
mask=noise_mask,
|
mask=noise_mask,
|
||||||
to_zero=sigmas[-1]==0,
|
to_zero=sigmas[-1]==0,
|
||||||
end_step=sigmas.shape[0] - 1)
|
end_step=sigmas.shape[0] - 1,
|
||||||
|
disable_pbar=disable_pbar)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
extra_args["denoise_mask"] = denoise_mask
|
extra_args["denoise_mask"] = denoise_mask
|
||||||
|
Loading…
Reference in New Issue
Block a user