mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Make euler_ancestral work on flow models (credit: Ashen).
This commit is contained in:
parent
ce759b7db6
commit
d605677b33
@ -164,6 +164,8 @@ def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None,
|
|||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||||
|
if isinstance(model.inner_model.inner_model.model_sampling, comfy.model_sampling.CONST):
|
||||||
|
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
|
||||||
"""Ancestral sampling with Euler method steps."""
|
"""Ancestral sampling with Euler method steps."""
|
||||||
extra_args = {} if extra_args is None else extra_args
|
extra_args = {} if extra_args is None else extra_args
|
||||||
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||||
@ -181,6 +183,29 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
|
|||||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * sigma_up
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
|
||||||
|
"""Ancestral sampling with Euler method steps."""
|
||||||
|
extra_args = {} if extra_args is None else extra_args
|
||||||
|
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler
|
||||||
|
s_in = x.new_ones([x.shape[0]])
|
||||||
|
for i in trange(len(sigmas) - 1, disable=disable):
|
||||||
|
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||||
|
# sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1], eta=eta)
|
||||||
|
downstep_ratio = 1 + (sigmas[i+1]/sigmas[i] - 1) * eta
|
||||||
|
sigma_down = sigmas[i+1] * downstep_ratio
|
||||||
|
alpha_ip1 = 1 - sigmas[i+1]
|
||||||
|
alpha_down = 1 - sigma_down
|
||||||
|
renoise_coeff = (sigmas[i+1]**2 - sigma_down**2*alpha_ip1**2/alpha_down**2)**0.5
|
||||||
|
if callback is not None:
|
||||||
|
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||||
|
|
||||||
|
# Euler method
|
||||||
|
sigma_down_i_ratio = sigma_down / sigmas[i]
|
||||||
|
x = sigma_down_i_ratio * x + (1 - sigma_down_i_ratio) * denoised
|
||||||
|
if sigmas[i + 1] > 0 and eta > 0:
|
||||||
|
x = (alpha_ip1/alpha_down) * x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * renoise_coeff
|
||||||
|
return x
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
def sample_heun(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
|
||||||
|
Loading…
Reference in New Issue
Block a user