mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-10 18:05:16 +00:00
Replace print with logging (#6138)
* Replace print with logging * nit * nit * nit * nit * nit * nit
This commit is contained in:
parent
bddb02660c
commit
d7969cb070
@ -28,7 +28,7 @@ def pull(repo, remote_name='origin', branch='master'):
|
|||||||
|
|
||||||
if repo.index.conflicts is not None:
|
if repo.index.conflicts is not None:
|
||||||
for conflict in repo.index.conflicts:
|
for conflict in repo.index.conflicts:
|
||||||
print('Conflicts found in:', conflict[0].path)
|
print('Conflicts found in:', conflict[0].path) # noqa: T201
|
||||||
raise AssertionError('Conflicts, ahhhhh!!')
|
raise AssertionError('Conflicts, ahhhhh!!')
|
||||||
|
|
||||||
user = repo.default_signature
|
user = repo.default_signature
|
||||||
@ -49,18 +49,18 @@ repo_path = str(sys.argv[1])
|
|||||||
repo = pygit2.Repository(repo_path)
|
repo = pygit2.Repository(repo_path)
|
||||||
ident = pygit2.Signature('comfyui', 'comfy@ui')
|
ident = pygit2.Signature('comfyui', 'comfy@ui')
|
||||||
try:
|
try:
|
||||||
print("stashing current changes")
|
print("stashing current changes") # noqa: T201
|
||||||
repo.stash(ident)
|
repo.stash(ident)
|
||||||
except KeyError:
|
except KeyError:
|
||||||
print("nothing to stash")
|
print("nothing to stash") # noqa: T201
|
||||||
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
|
||||||
print("creating backup branch: {}".format(backup_branch_name))
|
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
|
||||||
try:
|
try:
|
||||||
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
repo.branches.local.create(backup_branch_name, repo.head.peel())
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
print("checking out master branch")
|
print("checking out master branch") # noqa: T201
|
||||||
branch = repo.lookup_branch('master')
|
branch = repo.lookup_branch('master')
|
||||||
if branch is None:
|
if branch is None:
|
||||||
ref = repo.lookup_reference('refs/remotes/origin/master')
|
ref = repo.lookup_reference('refs/remotes/origin/master')
|
||||||
@ -72,7 +72,7 @@ else:
|
|||||||
ref = repo.lookup_reference(branch.name)
|
ref = repo.lookup_reference(branch.name)
|
||||||
repo.checkout(ref)
|
repo.checkout(ref)
|
||||||
|
|
||||||
print("pulling latest changes")
|
print("pulling latest changes") # noqa: T201
|
||||||
pull(repo)
|
pull(repo)
|
||||||
|
|
||||||
if "--stable" in sys.argv:
|
if "--stable" in sys.argv:
|
||||||
@ -94,7 +94,7 @@ if "--stable" in sys.argv:
|
|||||||
if latest_tag is not None:
|
if latest_tag is not None:
|
||||||
repo.checkout(latest_tag)
|
repo.checkout(latest_tag)
|
||||||
|
|
||||||
print("Done!")
|
print("Done!") # noqa: T201
|
||||||
|
|
||||||
self_update = True
|
self_update = True
|
||||||
if len(sys.argv) > 2:
|
if len(sys.argv) > 2:
|
||||||
|
@ -38,8 +38,8 @@ class UserManager():
|
|||||||
if not os.path.exists(user_directory):
|
if not os.path.exists(user_directory):
|
||||||
os.makedirs(user_directory, exist_ok=True)
|
os.makedirs(user_directory, exist_ok=True)
|
||||||
if not args.multi_user:
|
if not args.multi_user:
|
||||||
print("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
|
||||||
print("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
|
||||||
|
|
||||||
if args.multi_user:
|
if args.multi_user:
|
||||||
if os.path.isfile(self.get_users_file()):
|
if os.path.isfile(self.get_users_file()):
|
||||||
|
@ -160,7 +160,6 @@ class ControlNet(nn.Module):
|
|||||||
if isinstance(self.num_classes, int):
|
if isinstance(self.num_classes, int):
|
||||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||||
elif self.num_classes == "continuous":
|
elif self.num_classes == "continuous":
|
||||||
print("setting up linear c_adm embedding layer")
|
|
||||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||||
elif self.num_classes == "sequential":
|
elif self.num_classes == "sequential":
|
||||||
assert adm_in_channels is not None
|
assert adm_in_channels is not None
|
||||||
|
@ -2,6 +2,7 @@
|
|||||||
|
|
||||||
import torch
|
import torch
|
||||||
import math
|
import math
|
||||||
|
import logging
|
||||||
|
|
||||||
from tqdm.auto import trange
|
from tqdm.auto import trange
|
||||||
|
|
||||||
@ -474,7 +475,7 @@ class UniPC:
|
|||||||
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
|
||||||
|
|
||||||
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
|
||||||
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
|
||||||
ns = self.noise_schedule
|
ns = self.noise_schedule
|
||||||
assert order <= len(model_prev_list)
|
assert order <= len(model_prev_list)
|
||||||
|
|
||||||
@ -518,7 +519,6 @@ class UniPC:
|
|||||||
A_p = C_inv_p
|
A_p = C_inv_p
|
||||||
|
|
||||||
if use_corrector:
|
if use_corrector:
|
||||||
print('using corrector')
|
|
||||||
C_inv = torch.linalg.inv(C)
|
C_inv = torch.linalg.inv(C)
|
||||||
A_c = C_inv
|
A_c = C_inv
|
||||||
|
|
||||||
|
@ -5,6 +5,7 @@ import math
|
|||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import itertools
|
import itertools
|
||||||
|
import logging
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
from comfy.model_patcher import ModelPatcher, PatcherInjection
|
||||||
@ -575,7 +576,7 @@ def load_hook_lora_for_models(model: 'ModelPatcher', clip: 'CLIP', lora: dict[st
|
|||||||
k1 = set(k1)
|
k1 = set(k1)
|
||||||
for x in loaded:
|
for x in loaded:
|
||||||
if (x not in k) and (x not in k1):
|
if (x not in k) and (x not in k1):
|
||||||
print(f"NOT LOADED {x}")
|
logging.warning(f"NOT LOADED {x}")
|
||||||
return (new_modelpatcher, new_clip, hook_group)
|
return (new_modelpatcher, new_clip, hook_group)
|
||||||
|
|
||||||
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
|
||||||
|
@ -381,7 +381,6 @@ class MMDiT(nn.Module):
|
|||||||
pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
|
pe_new = pe_as_2d.squeeze(0).permute(1, 2, 0).flatten(0, 1)
|
||||||
self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
|
self.positional_encoding.data = pe_new.unsqueeze(0).contiguous()
|
||||||
self.h_max, self.w_max = target_dim
|
self.h_max, self.w_max = target_dim
|
||||||
print("PE extended to", target_dim)
|
|
||||||
|
|
||||||
def pe_selection_index_based_on_dim(self, h, w):
|
def pe_selection_index_based_on_dim(self, h, w):
|
||||||
h_p, w_p = h // self.patch_size, w // self.patch_size
|
h_p, w_p = h // self.patch_size, w // self.patch_size
|
||||||
|
@ -9,6 +9,7 @@
|
|||||||
|
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
import logging
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -130,7 +131,7 @@ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timestep
|
|||||||
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||||||
steps_out = ddim_timesteps + 1
|
steps_out = ddim_timesteps + 1
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
logging.info(f'Selected timesteps for ddim sampler: {steps_out}')
|
||||||
return steps_out
|
return steps_out
|
||||||
|
|
||||||
|
|
||||||
@ -142,8 +143,8 @@ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
|||||||
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||||||
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
logging.info(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||||||
print(f'For the chosen value of eta, which is {eta}, '
|
logging.info(f'For the chosen value of eta, which is {eta}, '
|
||||||
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||||||
return sigmas, alphas, alphas_prev
|
return sigmas, alphas, alphas_prev
|
||||||
|
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import importlib
|
import importlib
|
||||||
|
import logging
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from torch import optim
|
from torch import optim
|
||||||
@ -23,7 +24,7 @@ def log_txt_as_img(wh, xc, size=10):
|
|||||||
try:
|
try:
|
||||||
draw.text((0, 0), lines, fill="black", font=font)
|
draw.text((0, 0), lines, fill="black", font=font)
|
||||||
except UnicodeEncodeError:
|
except UnicodeEncodeError:
|
||||||
print("Cant encode string for logging. Skipping.")
|
logging.warning("Cant encode string for logging. Skipping.")
|
||||||
|
|
||||||
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
|
||||||
txts.append(txt)
|
txts.append(txt)
|
||||||
@ -65,7 +66,7 @@ def mean_flat(tensor):
|
|||||||
def count_params(model, verbose=False):
|
def count_params(model, verbose=False):
|
||||||
total_params = sum(p.numel() for p in model.parameters())
|
total_params = sum(p.numel() for p in model.parameters())
|
||||||
if verbose:
|
if verbose:
|
||||||
print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
logging.info(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
|
||||||
return total_params
|
return total_params
|
||||||
|
|
||||||
|
|
||||||
|
@ -770,7 +770,6 @@ class Flux(BaseModel):
|
|||||||
mask = torch.ones_like(noise)[:, :1]
|
mask = torch.ones_like(noise)[:, :1]
|
||||||
|
|
||||||
mask = torch.mean(mask, dim=1, keepdim=True)
|
mask = torch.mean(mask, dim=1, keepdim=True)
|
||||||
print(mask.shape)
|
|
||||||
mask = utils.common_upscale(mask.to(device), noise.shape[-1] * 8, noise.shape[-2] * 8, "bilinear", "center")
|
mask = utils.common_upscale(mask.to(device), noise.shape[-1] * 8, noise.shape[-2] * 8, "bilinear", "center")
|
||||||
mask = mask.view(mask.shape[0], mask.shape[2] // 8, 8, mask.shape[3] // 8, 8).permute(0, 2, 4, 1, 3).reshape(mask.shape[0], -1, mask.shape[2] // 8, mask.shape[3] // 8)
|
mask = mask.view(mask.shape[0], mask.shape[2] // 8, 8, mask.shape[3] // 8, 8).permute(0, 2, 4, 1, 3).reshape(mask.shape[0], -1, mask.shape[2] // 8, mask.shape[3] // 8)
|
||||||
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
mask = utils.resize_to_batch_size(mask, noise.shape[0])
|
||||||
|
@ -1084,7 +1084,7 @@ def unload_all_models():
|
|||||||
|
|
||||||
|
|
||||||
def resolve_lowvram_weight(weight, model, key): #TODO: remove
|
def resolve_lowvram_weight(weight, model, key): #TODO: remove
|
||||||
print("WARNING: The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
|
logging.warning("The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
|
||||||
return weight
|
return weight
|
||||||
|
|
||||||
#TODO: might be cleaner to put this somewhere else
|
#TODO: might be cleaner to put this somewhere else
|
||||||
|
@ -773,7 +773,7 @@ class ModelPatcher:
|
|||||||
return self.model.device
|
return self.model.device
|
||||||
|
|
||||||
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
|
def calculate_weight(self, patches, weight, key, intermediate_dtype=torch.float32):
|
||||||
print("WARNING the ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
|
logging.warning("The ModelPatcher.calculate_weight function is deprecated, please use: comfy.lora.calculate_weight instead")
|
||||||
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
|
return comfy.lora.calculate_weight(patches, weight, key, intermediate_dtype=intermediate_dtype)
|
||||||
|
|
||||||
def cleanup(self):
|
def cleanup(self):
|
||||||
@ -1029,7 +1029,7 @@ class ModelPatcher:
|
|||||||
if cached_weights is not None:
|
if cached_weights is not None:
|
||||||
for key in cached_weights:
|
for key in cached_weights:
|
||||||
if key not in model_sd_keys:
|
if key not in model_sd_keys:
|
||||||
print(f"WARNING cached hook could not patch. key does not exist in model: {key}")
|
logging.warning(f"Cached hook could not patch. Key does not exist in model: {key}")
|
||||||
continue
|
continue
|
||||||
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
|
self.patch_cached_hook_weights(cached_weights=cached_weights, key=key, memory_counter=memory_counter)
|
||||||
else:
|
else:
|
||||||
@ -1039,7 +1039,7 @@ class ModelPatcher:
|
|||||||
original_weights = self.get_key_patches()
|
original_weights = self.get_key_patches()
|
||||||
for key in relevant_patches:
|
for key in relevant_patches:
|
||||||
if key not in model_sd_keys:
|
if key not in model_sd_keys:
|
||||||
print(f"WARNING cached hook would not patch. key does not exist in model: {key}")
|
logging.warning(f"Cached hook would not patch. Key does not exist in model: {key}")
|
||||||
continue
|
continue
|
||||||
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
|
self.patch_hook_weight_to_device(hooks=hooks, combined_patches=relevant_patches, key=key, original_weights=original_weights,
|
||||||
memory_counter=memory_counter)
|
memory_counter=memory_counter)
|
||||||
|
@ -940,11 +940,11 @@ def load_diffusion_model(unet_path, model_options={}):
|
|||||||
return model
|
return model
|
||||||
|
|
||||||
def load_unet(unet_path, dtype=None):
|
def load_unet(unet_path, dtype=None):
|
||||||
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
logging.warning("The load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
||||||
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
||||||
|
|
||||||
def load_unet_state_dict(sd, dtype=None):
|
def load_unet_state_dict(sd, dtype=None):
|
||||||
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
logging.warning("The load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
||||||
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
||||||
|
|
||||||
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
||||||
|
@ -41,8 +41,7 @@ class ClipTokenWeightEncoder:
|
|||||||
to_encode.append(self.gen_empty_tokens(self.special_tokens, max_token_len))
|
to_encode.append(self.gen_empty_tokens(self.special_tokens, max_token_len))
|
||||||
else:
|
else:
|
||||||
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
|
to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))
|
||||||
print(to_encode)
|
|
||||||
|
|
||||||
o = self.encode(to_encode)
|
o = self.encode(to_encode)
|
||||||
out, pooled = o[:2]
|
out, pooled = o[:2]
|
||||||
|
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
|
import logging
|
||||||
from spandrel import ModelLoader
|
from spandrel import ModelLoader
|
||||||
|
|
||||||
def load_state_dict(state_dict):
|
def load_state_dict(state_dict):
|
||||||
print("WARNING: comfy_extras.chainner_models is deprecated and has been replaced by the spandrel library.")
|
logging.warning("comfy_extras.chainner_models is deprecated and has been replaced by the spandrel library.")
|
||||||
return ModelLoader().load_from_state_dict(state_dict).eval()
|
return ModelLoader().load_from_state_dict(state_dict).eval()
|
||||||
|
@ -1,5 +1,6 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
from typing import TYPE_CHECKING, Union
|
from typing import TYPE_CHECKING, Union
|
||||||
|
import logging
|
||||||
import torch
|
import torch
|
||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
|
|
||||||
@ -539,7 +540,7 @@ class CreateHookKeyframesInterpolated:
|
|||||||
is_first = False
|
is_first = False
|
||||||
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
|
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
|
||||||
if print_keyframes:
|
if print_keyframes:
|
||||||
print(f"Hook Keyframe - start_percent:{percent} = {strength}")
|
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
|
||||||
return (prev_hook_kf,)
|
return (prev_hook_kf,)
|
||||||
|
|
||||||
class CreateHookKeyframesFromFloats:
|
class CreateHookKeyframesFromFloats:
|
||||||
@ -588,7 +589,7 @@ class CreateHookKeyframesFromFloats:
|
|||||||
is_first = False
|
is_first = False
|
||||||
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
|
prev_hook_kf.add(comfy.hooks.HookKeyframe(strength=strength, start_percent=percent, guarantee_steps=guarantee_steps))
|
||||||
if print_keyframes:
|
if print_keyframes:
|
||||||
print(f"Hook Keyframe - start_percent:{percent} = {strength}")
|
logging.info(f"Hook Keyframe - start_percent:{percent} = {strength}")
|
||||||
return (prev_hook_kf,)
|
return (prev_hook_kf,)
|
||||||
#------------------------------------------
|
#------------------------------------------
|
||||||
###########################################
|
###########################################
|
||||||
|
8
main.py
8
main.py
@ -63,7 +63,7 @@ def execute_prestartup_script():
|
|||||||
spec.loader.exec_module(module)
|
spec.loader.exec_module(module)
|
||||||
return True
|
return True
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Failed to execute startup-script: {script_path} / {e}")
|
logging.error(f"Failed to execute startup-script: {script_path} / {e}")
|
||||||
return False
|
return False
|
||||||
|
|
||||||
if args.disable_all_custom_nodes:
|
if args.disable_all_custom_nodes:
|
||||||
@ -85,14 +85,14 @@ def execute_prestartup_script():
|
|||||||
success = execute_script(script_path)
|
success = execute_script(script_path)
|
||||||
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
|
node_prestartup_times.append((time.perf_counter() - time_before, module_path, success))
|
||||||
if len(node_prestartup_times) > 0:
|
if len(node_prestartup_times) > 0:
|
||||||
print("\nPrestartup times for custom nodes:")
|
logging.info("\nPrestartup times for custom nodes:")
|
||||||
for n in sorted(node_prestartup_times):
|
for n in sorted(node_prestartup_times):
|
||||||
if n[2]:
|
if n[2]:
|
||||||
import_message = ""
|
import_message = ""
|
||||||
else:
|
else:
|
||||||
import_message = " (PRESTARTUP FAILED)"
|
import_message = " (PRESTARTUP FAILED)"
|
||||||
print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
|
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
|
||||||
print()
|
logging.info("")
|
||||||
|
|
||||||
apply_custom_paths()
|
apply_custom_paths()
|
||||||
execute_prestartup_script()
|
execute_prestartup_script()
|
||||||
|
@ -32,4 +32,4 @@ def update_windows_updater():
|
|||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
shutil.copy(bat_path, dest_bat_path)
|
shutil.copy(bat_path, dest_bat_path)
|
||||||
print("Updated the windows standalone package updater.")
|
print("Updated the windows standalone package updater.") # noqa: T201
|
||||||
|
@ -4,7 +4,10 @@ lint.ignore = ["ALL"]
|
|||||||
# Enable specific rules
|
# Enable specific rules
|
||||||
lint.select = [
|
lint.select = [
|
||||||
"S307", # suspicious-eval-usage
|
"S307", # suspicious-eval-usage
|
||||||
|
"T201", # print-usage
|
||||||
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
|
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
|
||||||
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
|
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
|
||||||
"F",
|
"F",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
exclude = ["*.ipynb"]
|
||||||
|
@ -89,9 +89,9 @@ async def test_routes_added_to_app(aiohttp_client_factory, internal_routes):
|
|||||||
client = await aiohttp_client_factory()
|
client = await aiohttp_client_factory()
|
||||||
try:
|
try:
|
||||||
resp = await client.get('/files')
|
resp = await client.get('/files')
|
||||||
print(f"Response received: status {resp.status}")
|
print(f"Response received: status {resp.status}") # noqa: T201
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Exception occurred during GET request: {e}")
|
print(f"Exception occurred during GET request: {e}") # noqa: T201
|
||||||
raise
|
raise
|
||||||
|
|
||||||
assert resp.status != 404, "Route /files does not exist"
|
assert resp.status != 404, "Route /files does not exist"
|
||||||
|
@ -28,7 +28,7 @@ def pytest_collection_modifyitems(items):
|
|||||||
last_items = []
|
last_items = []
|
||||||
for test_name in LAST_TESTS:
|
for test_name in LAST_TESTS:
|
||||||
for item in items.copy():
|
for item in items.copy():
|
||||||
print(item.module.__name__, item)
|
print(item.module.__name__, item) # noqa: T201
|
||||||
if item.module.__name__ == test_name:
|
if item.module.__name__ == test_name:
|
||||||
last_items.append(item)
|
last_items.append(item)
|
||||||
items.remove(item)
|
items.remove(item)
|
||||||
|
@ -134,7 +134,7 @@ class TestExecution:
|
|||||||
use_lru, lru_size = request.param
|
use_lru, lru_size = request.param
|
||||||
if use_lru:
|
if use_lru:
|
||||||
pargs += ['--cache-lru', str(lru_size)]
|
pargs += ['--cache-lru', str(lru_size)]
|
||||||
print("Running server with args:", pargs)
|
print("Running server with args:", pargs) # noqa: T201
|
||||||
p = subprocess.Popen(pargs)
|
p = subprocess.Popen(pargs)
|
||||||
yield
|
yield
|
||||||
p.kill()
|
p.kill()
|
||||||
@ -150,8 +150,8 @@ class TestExecution:
|
|||||||
try:
|
try:
|
||||||
comfy_client.connect(listen=listen, port=port)
|
comfy_client.connect(listen=listen, port=port)
|
||||||
except ConnectionRefusedError as e:
|
except ConnectionRefusedError as e:
|
||||||
print(e)
|
print(e) # noqa: T201
|
||||||
print(f"({i+1}/{n_tries}) Retrying...")
|
print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
return comfy_client
|
return comfy_client
|
||||||
|
@ -171,8 +171,8 @@ class TestInference:
|
|||||||
try:
|
try:
|
||||||
comfy_client.connect(listen=listen, port=port)
|
comfy_client.connect(listen=listen, port=port)
|
||||||
except ConnectionRefusedError as e:
|
except ConnectionRefusedError as e:
|
||||||
print(e)
|
print(e) # noqa: T201
|
||||||
print(f"({i+1}/{n_tries}) Retrying...")
|
print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201
|
||||||
else:
|
else:
|
||||||
break
|
break
|
||||||
return comfy_client
|
return comfy_client
|
||||||
|
Loading…
Reference in New Issue
Block a user