diff --git a/comfy/controlnet.py b/comfy/controlnet.py index 09868158..433381df 100644 --- a/comfy/controlnet.py +++ b/comfy/controlnet.py @@ -33,7 +33,7 @@ class ControlBase: self.cond_hint_original = None self.cond_hint = None self.strength = 1.0 - self.timestep_percent_range = (1.0, 0.0) + self.timestep_percent_range = (0.0, 1.0) self.timestep_range = None if device is None: @@ -42,7 +42,7 @@ class ControlBase: self.previous_controlnet = None self.global_average_pooling = False - def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(1.0, 0.0)): + def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0)): self.cond_hint_original = cond_hint self.strength = strength self.timestep_percent_range = timestep_percent_range diff --git a/comfy/model_sampling.py b/comfy/model_sampling.py index a2935d47..d5b1642e 100644 --- a/comfy/model_sampling.py +++ b/comfy/model_sampling.py @@ -76,5 +76,10 @@ class ModelSamplingDiscrete(torch.nn.Module): return log_sigma.exp() def percent_to_sigma(self, percent): + if percent <= 0.0: + return torch.tensor(999999999.9) + if percent >= 1.0: + return torch.tensor(0.0) + percent = 1.0 - percent return self.sigma(torch.tensor(percent * 999.0)) diff --git a/comfy/samplers.py b/comfy/samplers.py index d8037d8e..1d012a51 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -220,6 +220,8 @@ def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_option transformer_options["patches"] = patches transformer_options["cond_or_uncond"] = cond_or_uncond[:] + transformer_options["sigmas"] = timestep + c['transformer_options'] = transformer_options if 'model_function_wrapper' in model_options: diff --git a/comfy_extras/nodes_model_advanced.py b/comfy_extras/nodes_model_advanced.py index 399123ea..c8c4b4a1 100644 --- a/comfy_extras/nodes_model_advanced.py +++ b/comfy_extras/nodes_model_advanced.py @@ -66,6 +66,11 @@ class ModelSamplingDiscreteLCM(torch.nn.Module): return log_sigma.exp() def percent_to_sigma(self, percent): + if percent <= 0.0: + return torch.tensor(999999999.9) + if percent >= 1.0: + return torch.tensor(0.0) + percent = 1.0 - percent return self.sigma(torch.tensor(percent * 999.0)) diff --git a/nodes.py b/nodes.py index 2bbfd8fe..e8cfb5e6 100644 --- a/nodes.py +++ b/nodes.py @@ -248,8 +248,8 @@ class ConditioningSetTimestepRange: c = [] for t in conditioning: d = t[1].copy() - d['start_percent'] = 1.0 - start - d['end_percent'] = 1.0 - end + d['start_percent'] = start + d['end_percent'] = end n = [t[0], d] c.append(n) return (c, ) @@ -685,7 +685,7 @@ class ControlNetApplyAdvanced: if prev_cnet in cnets: c_net = cnets[prev_cnet] else: - c_net = control_net.copy().set_cond_hint(control_hint, strength, (1.0 - start_percent, 1.0 - end_percent)) + c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent)) c_net.set_previous_controlnet(prev_cnet) cnets[prev_cnet] = c_net