Simpler base model code.

This commit is contained in:
comfyanonymous 2023-06-09 12:24:24 -04:00
parent 4b0b516544
commit de142eaad5
4 changed files with 163 additions and 74 deletions

View File

@ -4,7 +4,7 @@ import yaml
import folder_paths import folder_paths
from comfy.ldm.util import instantiate_from_config from comfy.ldm.util import instantiate_from_config
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE, load_checkpoint
import os.path as osp import os.path as osp
import re import re
import torch import torch
@ -84,28 +84,4 @@ def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, emb
# Put together new checkpoint # Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict} sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
clip = None return load_checkpoint(embedding_directory=embedding_directory, state_dict=sd, config=config)
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE(scale_factor=scale_factor, config=vae_config)
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
model = instantiate_from_config(config["model"])
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16:
model = model.half()
return ModelPatcher(model), clip, vae

66
comfy/model_base.py Normal file
View File

@ -0,0 +1,66 @@
import torch
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.util import make_beta_schedule
import numpy as np
class BaseModel(torch.nn.Module):
def __init__(self, unet_config, v_prediction=False):
super().__init__()
self.register_schedule(given_betas=None, beta_schedule="linear", timesteps=1000, linear_start=0.00085, linear_end=0.012, cosine_s=8e-3)
self.diffusion_model = UNetModel(**unet_config)
self.v_prediction = v_prediction
if self.v_prediction:
self.parameterization = "v"
else:
self.parameterization = "eps"
if "adm_in_channels" in unet_config:
self.adm_channels = unet_config["adm_in_channels"]
else:
self.adm_channels = 0
print("v_prediction", v_prediction)
print("adm", self.adm_channels)
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if given_betas is not None:
betas = given_betas
else:
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
def apply_model(self, x, t, c_concat=None, c_crossattn=None, c_adm=None, control=None, transformer_options={}):
if c_concat is not None:
xc = torch.cat([x] + c_concat, dim=1)
else:
xc = x
context = torch.cat(c_crossattn, 1)
return self.diffusion_model(xc, t, context=context, y=c_adm, control=control, transformer_options=transformer_options)
def get_dtype(self):
return self.diffusion_model.dtype
def is_adm(self):
return self.adm_channels > 0
class SD21UNCLIP(BaseModel):
def __init__(self, unet_config, noise_aug_config, v_prediction=True):
super().__init__(unet_config, v_prediction)
self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config)
class SDInpaint(BaseModel):
def __init__(self, unet_config, v_prediction=False):
super().__init__(unet_config, v_prediction)
self.concat_keys = ("mask", "masked_image")

View File

@ -248,7 +248,7 @@ def sampling_function(model_function, x, timestep, uncond, cond, cond_scale, con
c['transformer_options'] = transformer_options c['transformer_options'] = transformer_options
output = model_function(input_x, timestep_, cond=c).chunk(batch_chunks) output = model_function(input_x, timestep_, **c).chunk(batch_chunks)
del input_x del input_x
model_management.throw_exception_if_processing_interrupted() model_management.throw_exception_if_processing_interrupted()
@ -460,9 +460,11 @@ def apply_empty_x_to_equal_area(conds, uncond, name, uncond_fill_func):
uncond[temp[1]] = [o[0], n] uncond[temp[1]] = [o[0], n]
def encode_adm(noise_augmentor, conds, batch_size, device): def encode_adm(conds, batch_size, device, noise_augmentor=None):
for t in range(len(conds)): for t in range(len(conds)):
x = conds[t] x = conds[t]
adm_out = None
if noise_augmentor is not None:
if 'adm' in x[1]: if 'adm' in x[1]:
adm_inputs = [] adm_inputs = []
weights = [] weights = []
@ -488,6 +490,10 @@ def encode_adm(noise_augmentor, conds, batch_size, device):
adm_out = torch.cat((c_adm, noise_level_emb), 1) adm_out = torch.cat((c_adm, noise_level_emb), 1)
else: else:
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device) adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
else:
if 'adm' in x[1]:
adm_out = x[1]["adm"].to(device)
if adm_out is not None:
x[1] = x[1].copy() x[1] = x[1].copy()
x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size) x[1]["adm_encoded"] = torch.cat([adm_out] * batch_size)
@ -591,14 +597,17 @@ class KSampler:
apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x]) apply_empty_x_to_equal_area(positive, negative, 'control', lambda cond_cnets, x: cond_cnets[x])
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x])
if self.model.model.diffusion_model.dtype == torch.float16: if self.model.get_dtype() == torch.float16:
precision_scope = torch.autocast precision_scope = torch.autocast
else: else:
precision_scope = contextlib.nullcontext precision_scope = contextlib.nullcontext
if self.model.is_adm():
noise_augmentor = None
if hasattr(self.model, 'noise_augmentor'): #unclip if hasattr(self.model, 'noise_augmentor'): #unclip
positive = encode_adm(self.model.noise_augmentor, positive, noise.shape[0], self.device) noise_augmentor = self.model.noise_augmentor
negative = encode_adm(self.model.noise_augmentor, negative, noise.shape[0], self.device) positive = encode_adm(positive, noise.shape[0], self.device, noise_augmentor)
negative = encode_adm(negative, noise.shape[0], self.device, noise_augmentor)
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options} extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": self.model_options}

View File

@ -15,8 +15,15 @@ from . import utils
from . import clip_vision from . import clip_vision
from . import gligen from . import gligen
from . import diffusers_convert from . import diffusers_convert
from . import model_base
def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]): def load_model_weights(model, sd, verbose=False, load_state_dict_to=[]):
replace_prefix = {"model.diffusion_model.": "diffusion_model."}
for rp in replace_prefix:
replace = list(map(lambda a: (a, "{}{}".format(replace_prefix[rp], a[len(rp):])), filter(lambda a: a.startswith(rp), sd.keys())))
for x in replace:
sd[x[1]] = sd.pop(x[0])
m, u = model.load_state_dict(sd, strict=False) m, u = model.load_state_dict(sd, strict=False)
k = list(sd.keys()) k = list(sd.keys())
@ -182,7 +189,7 @@ def model_lora_keys(model, key_map={}):
counter = 0 counter = 0
for b in range(12): for b in range(12):
tk = "model.diffusion_model.input_blocks.{}.1".format(b) tk = "diffusion_model.input_blocks.{}.1".format(b)
up_counter = 0 up_counter = 0
for c in LORA_UNET_MAP_ATTENTIONS: for c in LORA_UNET_MAP_ATTENTIONS:
k = "{}.{}.weight".format(tk, c) k = "{}.{}.weight".format(tk, c)
@ -193,13 +200,13 @@ def model_lora_keys(model, key_map={}):
if up_counter >= 4: if up_counter >= 4:
counter += 1 counter += 1
for c in LORA_UNET_MAP_ATTENTIONS: for c in LORA_UNET_MAP_ATTENTIONS:
k = "model.diffusion_model.middle_block.1.{}.weight".format(c) k = "diffusion_model.middle_block.1.{}.weight".format(c)
if k in sdk: if k in sdk:
lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c]) lora_key = "lora_unet_mid_block_attentions_0_{}".format(LORA_UNET_MAP_ATTENTIONS[c])
key_map[lora_key] = k key_map[lora_key] = k
counter = 3 counter = 3
for b in range(12): for b in range(12):
tk = "model.diffusion_model.output_blocks.{}.1".format(b) tk = "diffusion_model.output_blocks.{}.1".format(b)
up_counter = 0 up_counter = 0
for c in LORA_UNET_MAP_ATTENTIONS: for c in LORA_UNET_MAP_ATTENTIONS:
k = "{}.{}.weight".format(tk, c) k = "{}.{}.weight".format(tk, c)
@ -223,7 +230,7 @@ def model_lora_keys(model, key_map={}):
ds_counter = 0 ds_counter = 0
counter = 0 counter = 0
for b in range(12): for b in range(12):
tk = "model.diffusion_model.input_blocks.{}.0".format(b) tk = "diffusion_model.input_blocks.{}.0".format(b)
key_in = False key_in = False
for c in LORA_UNET_MAP_RESNET: for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c) k = "{}.{}.weight".format(tk, c)
@ -242,7 +249,7 @@ def model_lora_keys(model, key_map={}):
counter = 0 counter = 0
for b in range(3): for b in range(3):
tk = "model.diffusion_model.middle_block.{}".format(b) tk = "diffusion_model.middle_block.{}".format(b)
key_in = False key_in = False
for c in LORA_UNET_MAP_RESNET: for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c) k = "{}.{}.weight".format(tk, c)
@ -256,7 +263,7 @@ def model_lora_keys(model, key_map={}):
counter = 0 counter = 0
us_counter = 0 us_counter = 0
for b in range(12): for b in range(12):
tk = "model.diffusion_model.output_blocks.{}.0".format(b) tk = "diffusion_model.output_blocks.{}.0".format(b)
key_in = False key_in = False
for c in LORA_UNET_MAP_RESNET: for c in LORA_UNET_MAP_RESNET:
k = "{}.{}.weight".format(tk, c) k = "{}.{}.weight".format(tk, c)
@ -332,7 +339,7 @@ class ModelPatcher:
patch_list[i] = patch_list[i].to(device) patch_list[i] = patch_list[i].to(device)
def model_dtype(self): def model_dtype(self):
return self.model.diffusion_model.dtype return self.model.get_dtype()
def add_patches(self, patches, strength=1.0): def add_patches(self, patches, strength=1.0):
p = {} p = {}
@ -764,7 +771,7 @@ def load_controlnet(ckpt_path, model=None):
for x in controlnet_data: for x in controlnet_data:
c_m = "control_model." c_m = "control_model."
if x.startswith(c_m): if x.startswith(c_m):
sd_key = "model.diffusion_model.{}".format(x[len(c_m):]) sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd: if sd_key in model_sd:
cd = controlnet_data[x] cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device) cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
@ -931,7 +938,8 @@ def load_gligen(ckpt_path):
model = model.half() model = model.half()
return model return model
def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=None): def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_clip=True, embedding_directory=None, state_dict=None, config=None):
if config is None:
with open(config_path, 'r') as stream: with open(config_path, 'r') as stream:
config = yaml.safe_load(stream) config = yaml.safe_load(stream)
model_config_params = config['model']['params'] model_config_params = config['model']['params']
@ -942,8 +950,19 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
fp16 = False fp16 = False
if "unet_config" in model_config_params: if "unet_config" in model_config_params:
if "params" in model_config_params["unet_config"]: if "params" in model_config_params["unet_config"]:
if "use_fp16" in model_config_params["unet_config"]["params"]: unet_config = model_config_params["unet_config"]["params"]
fp16 = model_config_params["unet_config"]["params"]["use_fp16"] if "use_fp16" in unet_config:
fp16 = unet_config["use_fp16"]
noise_aug_config = None
if "noise_aug_config" in model_config_params:
noise_aug_config = model_config_params["noise_aug_config"]
v_prediction = False
if "parameterization" in model_config_params:
if model_config_params["parameterization"] == "v":
v_prediction = True
clip = None clip = None
vae = None vae = None
@ -963,9 +982,16 @@ def load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, e
w.cond_stage_model = clip.cond_stage_model w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w] load_state_dict_to = [w]
model = instantiate_from_config(config["model"]) if config['model']["target"].endswith("LatentInpaintDiffusion"):
sd = utils.load_torch_file(ckpt_path) model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) elif config['model']["target"].endswith("ImageEmbeddingConditionedLatentDiffusion"):
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
else:
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
if state_dict is None:
state_dict = utils.load_torch_file(ckpt_path)
model = load_model_weights(model, state_dict, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16: if fp16:
model = model.half() model = model.half()
@ -1073,16 +1099,20 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config} sd_config["unet_config"] = {"target": "comfy.ldm.modules.diffusionmodules.openaimodel.UNetModel", "params": unet_config}
model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config} model_config = {"target": "comfy.ldm.models.diffusion.ddpm.LatentDiffusion", "params": sd_config}
unclip_model = False
inpaint_model = False
if noise_aug_config is not None: #SD2.x unclip model if noise_aug_config is not None: #SD2.x unclip model
sd_config["noise_aug_config"] = noise_aug_config sd_config["noise_aug_config"] = noise_aug_config
sd_config["image_size"] = 96 sd_config["image_size"] = 96
sd_config["embedding_dropout"] = 0.25 sd_config["embedding_dropout"] = 0.25
sd_config["conditioning_key"] = 'crossattn-adm' sd_config["conditioning_key"] = 'crossattn-adm'
unclip_model = True
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion" model_config["target"] = "comfy.ldm.models.diffusion.ddpm.ImageEmbeddingConditionedLatentDiffusion"
elif unet_config["in_channels"] > 4: #inpainting model elif unet_config["in_channels"] > 4: #inpainting model
sd_config["conditioning_key"] = "hybrid" sd_config["conditioning_key"] = "hybrid"
sd_config["finetune_keys"] = None sd_config["finetune_keys"] = None
model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion" model_config["target"] = "comfy.ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
inpaint_model = True
else: else:
sd_config["conditioning_key"] = "crossattn" sd_config["conditioning_key"] = "crossattn"
@ -1096,13 +1126,21 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
unet_config["num_classes"] = "sequential" unet_config["num_classes"] = "sequential"
unet_config["adm_in_channels"] = sd[unclip].shape[1] unet_config["adm_in_channels"] = sd[unclip].shape[1]
v_prediction = False
if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction if unet_config["context_dim"] == 1024 and unet_config["in_channels"] == 4: #only SD2.x non inpainting models are v prediction
k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias" k = "model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias"
out = sd[k] out = sd[k]
if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out. if torch.std(out, unbiased=False) > 0.09: # not sure how well this will actually work. I guess we will find out.
v_prediction = True
sd_config["parameterization"] = 'v' sd_config["parameterization"] = 'v'
model = instantiate_from_config(model_config) if inpaint_model:
model = model_base.SDInpaint(unet_config, v_prediction=v_prediction)
elif unclip_model:
model = model_base.SD21UNCLIP(unet_config, noise_aug_config["params"], v_prediction=v_prediction)
else:
model = model_base.BaseModel(unet_config, v_prediction=v_prediction)
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to) model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16: if fp16: