diff --git a/comfy/samplers.py b/comfy/samplers.py index 1bccc307..2973f4cf 100644 --- a/comfy/samplers.py +++ b/comfy/samplers.py @@ -347,6 +347,17 @@ def ddim_scheduler(model, steps): sigs += [0.0] return torch.FloatTensor(sigs) +def sgm_scheduler(model, steps): + sigs = [] + timesteps = torch.linspace(model.inner_model.inner_model.num_timesteps - 1, 0, steps + 1)[:-1].type(torch.int) + for x in range(len(timesteps)): + ts = timesteps[x] + if ts > 999: + ts = 999 + sigs.append(model.t_to_sigma(torch.tensor(ts))) + sigs += [0.0] + return torch.FloatTensor(sigs) + def blank_inpaint_image_like(latent_image): blank_image = torch.ones_like(latent_image) # these are the values for "zero" in pixel space translated to latent space @@ -525,7 +536,7 @@ def encode_adm(model, conds, batch_size, width, height, device, prompt_type): class KSampler: - SCHEDULERS = ["normal", "karras", "exponential", "simple", "ddim_uniform"] + SCHEDULERS = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform"] SAMPLERS = ["euler", "euler_ancestral", "heun", "dpm_2", "dpm_2_ancestral", "lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_sde", "dpmpp_sde_gpu", "dpmpp_2m", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddim", "uni_pc", "uni_pc_bh2"] @@ -570,6 +581,8 @@ class KSampler: sigmas = simple_scheduler(self.model_wrap, steps) elif self.scheduler == "ddim_uniform": sigmas = ddim_scheduler(self.model_wrap, steps) + elif self.scheduler == "sgm_uniform": + sigmas = sgm_scheduler(self.model_wrap, steps) else: print("error invalid scheduler", self.scheduler)