Support Lumina 2 model.

This commit is contained in:
comfyanonymous 2025-02-04 03:56:00 -05:00
parent 8d88bfaff9
commit e5ea112a90
11 changed files with 921 additions and 39 deletions

670
comfy/ldm/lumina/model.py Normal file
View File

@ -0,0 +1,670 @@
# Code from: https://github.com/Alpha-VLLM/Lumina-Image-2.0/blob/main/models/model.py
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.attention import optimized_attention_masked
def modulate(x, scale):
return x * (1 + scale.unsqueeze(1))
#############################################################################
# Core NextDiT Model #
#############################################################################
class JointAttention(nn.Module):
"""Multi-head attention module."""
def __init__(
self,
dim: int,
n_heads: int,
n_kv_heads: Optional[int],
qk_norm: bool,
operation_settings={},
):
"""
Initialize the Attention module.
Args:
dim (int): Number of input dimensions.
n_heads (int): Number of heads.
n_kv_heads (Optional[int]): Number of kv heads, if using GQA.
"""
super().__init__()
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
self.n_local_heads = n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = dim // n_heads
self.qkv = operation_settings.get("operations").Linear(
dim,
(n_heads + self.n_kv_heads + self.n_kv_heads) * self.head_dim,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.out = operation_settings.get("operations").Linear(
n_heads * self.head_dim,
dim,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
if qk_norm:
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
else:
self.q_norm = self.k_norm = nn.Identity()
@staticmethod
def apply_rotary_emb(
x_in: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
x = torch.view_as_complex(x_in.float().reshape(*x_in.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x * freqs_cis).flatten(3)
return x_out.type_as(x_in)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Args:
x:
x_mask:
freqs_cis:
Returns:
"""
bsz, seqlen, _ = x.shape
xq, xk, xv = torch.split(
self.qkv(x),
[
self.n_local_heads * self.head_dim,
self.n_local_kv_heads * self.head_dim,
self.n_local_kv_heads * self.head_dim,
],
dim=-1,
)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
xk = xk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
xv = xv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
output = optimized_attention_masked(xq.movedim(1, 2), xk.movedim(1, 2), xv.movedim(1, 2), self.n_local_heads, x_mask, skip_reshape=True)
return self.out(output)
class FeedForward(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int,
ffn_dim_multiplier: Optional[float],
operation_settings={},
):
"""
Initialize the FeedForward module.
Args:
dim (int): Input dimension.
hidden_dim (int): Hidden dimension of the feedforward layer.
multiple_of (int): Value to ensure hidden dimension is a multiple
of this value.
ffn_dim_multiplier (float, optional): Custom multiplier for hidden
dimension. Defaults to None.
"""
super().__init__()
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = operation_settings.get("operations").Linear(
dim,
hidden_dim,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.w2 = operation_settings.get("operations").Linear(
hidden_dim,
dim,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.w3 = operation_settings.get("operations").Linear(
dim,
hidden_dim,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
class JointTransformerBlock(nn.Module):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
modulation=True,
operation_settings={},
) -> None:
"""
Initialize a TransformerBlock.
Args:
layer_id (int): Identifier for the layer.
dim (int): Embedding dimension of the input features.
n_heads (int): Number of attention heads.
n_kv_heads (Optional[int]): Number of attention heads in key and
value features (if using GQA), or set to None for the same as
query.
multiple_of (int):
ffn_dim_multiplier (float):
norm_eps (float):
"""
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
operation_settings=operation_settings,
)
self.layer_id = layer_id
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.modulation = modulation
if modulation:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
def forward(
self,
x: torch.Tensor,
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor]=None,
):
"""
Perform a forward pass through the TransformerBlock.
Args:
x (torch.Tensor): Input tensor.
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies.
Returns:
torch.Tensor: Output tensor after applying attention and
feedforward layers.
"""
if self.modulation:
assert adaln_input is not None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
self.attention(
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
)
)
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
)
else:
assert adaln_input is None
x = x + self.attention_norm2(
self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
)
)
x = x + self.ffn_norm2(
self.feed_forward(
self.ffn_norm1(x),
)
)
return x
class FinalLayer(nn.Module):
"""
The final layer of NextDiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
super().__init__()
self.norm_final = operation_settings.get("operations").LayerNorm(
hidden_size,
elementwise_affine=False,
eps=1e-6,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.linear = operation_settings.get("operations").Linear(
hidden_size,
patch_size * patch_size * out_channels,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(hidden_size, 1024),
hidden_size,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
def forward(self, x, c):
scale = self.adaLN_modulation(c)
x = modulate(self.norm_final(x), scale)
x = self.linear(x)
return x
class RopeEmbedder:
def __init__(
self, theta: float = 10000.0, axes_dims: List[int] = (16, 56, 56), axes_lens: List[int] = (1, 512, 512)
):
super().__init__()
self.theta = theta
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.freqs_cis = NextDiT.precompute_freqs_cis(self.axes_dims, self.axes_lens, theta=self.theta)
def __call__(self, ids: torch.Tensor):
self.freqs_cis = [freqs_cis.to(ids.device) for freqs_cis in self.freqs_cis]
result = []
for i in range(len(self.axes_dims)):
index = ids[:, :, i:i+1].repeat(1, 1, self.freqs_cis[i].shape[-1]).to(torch.int64)
result.append(torch.gather(self.freqs_cis[i].unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
return torch.cat(result, dim=-1)
class NextDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
"""
def __init__(
self,
patch_size: int = 2,
in_channels: int = 4,
dim: int = 4096,
n_layers: int = 32,
n_refiner_layers: int = 2,
n_heads: int = 32,
n_kv_heads: Optional[int] = None,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
qk_norm: bool = False,
cap_feat_dim: int = 5120,
axes_dims: List[int] = (16, 56, 56),
axes_lens: List[int] = (1, 512, 512),
image_model=None,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.x_embedder = operation_settings.get("operations").Linear(
in_features=patch_size * patch_size * in_channels,
out_features=dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
self.noise_refiner = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
modulation=True,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
self.context_refiner = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
modulation=False,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential(
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
operation_settings.get("operations").Linear(
cap_feat_dim,
dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.layers = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
operation_settings=operation_settings,
)
for layer_id in range(n_layers)
]
)
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
assert (dim // n_heads) == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.rope_embedder = RopeEmbedder(axes_dims=axes_dims, axes_lens=axes_lens)
self.dim = dim
self.n_heads = n_heads
def unpatchify(
self, x: torch.Tensor, img_size: List[Tuple[int, int]], cap_size: List[int], return_tensor=False
) -> List[torch.Tensor]:
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
pH = pW = self.patch_size
imgs = []
for i in range(x.size(0)):
H, W = img_size[i]
begin = cap_size[i]
end = begin + (H // pH) * (W // pW)
imgs.append(
x[i][begin:end]
.view(H // pH, W // pW, pH, pW, self.out_channels)
.permute(4, 0, 2, 1, 3)
.flatten(3, 4)
.flatten(1, 2)
)
if return_tensor:
imgs = torch.stack(imgs, dim=0)
return imgs
def patchify_and_embed(
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
bsz = len(x)
pH = pW = self.patch_size
device = x[0].device
dtype = x[0].dtype
if cap_mask is not None:
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
else:
l_effective_cap_len = [num_tokens] * bsz
if cap_mask is not None and not torch.is_floating_point(cap_mask):
cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max
img_sizes = [(img.size(1), img.size(2)) for img in x]
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
max_seq_len = max(
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
)
max_cap_len = max(l_effective_cap_len)
max_img_len = max(l_effective_img_len)
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.int32, device=device)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
H, W = img_sizes[i]
H_tokens, W_tokens = H // pH, W // pW
assert H_tokens * W_tokens == img_len
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.int32, device=device)
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
row_ids = torch.arange(H_tokens, dtype=torch.int32, device=device).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = torch.arange(W_tokens, dtype=torch.int32, device=device).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids)
# build freqs_cis for cap and image individually
cap_freqs_cis_shape = list(freqs_cis.shape)
# cap_freqs_cis_shape[1] = max_cap_len
cap_freqs_cis_shape[1] = cap_feats.shape[1]
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
# refine context
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis)
# refine image
flat_x = []
for i in range(bsz):
img = x[i]
C, H, W = img.size()
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
flat_x.append(img)
x = flat_x
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=torch.bool, device=device)
for i in range(bsz):
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
padded_img_mask[i, :l_effective_img_len[i]] = True
padded_img_embed = self.x_embedder(padded_img_embed)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t)
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
else:
mask = None
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
# def forward(self, x, t, cap_feats, cap_mask):
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask
"""
Forward pass of NextDiT.
t: (N,) tensor of diffusion timesteps
y: (N,) tensor of text tokens/features
"""
t = self.t_embedder(t, dtype=x.dtype) # (N, D)
adaln_input = t
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
x_is_tensor = isinstance(x, torch.Tensor)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens)
freqs_cis = freqs_cis.to(x.device)
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input)
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)
return -x
@staticmethod
def precompute_freqs_cis(
dim: List[int],
end: List[int],
theta: float = 10000.0,
):
"""
Precompute the frequency tensor for complex exponentials (cis) with
given dimensions.
This function calculates a frequency tensor with complex exponentials
using the given dimension 'dim' and the end index 'end'. The 'theta'
parameter scales the frequencies. The returned tensor contains complex
values in complex64 data type.
Args:
dim (list): Dimension of the frequency tensor.
end (list): End index for precomputing frequencies.
theta (float, optional): Scaling factor for frequency computation.
Defaults to 10000.0.
Returns:
torch.Tensor: Precomputed frequency tensor with complex
exponentials.
"""
freqs_cis = []
for i, (d, e) in enumerate(zip(dim, end)):
freqs = 1.0 / (theta ** (torch.arange(0, d, 2, dtype=torch.float64, device="cpu") / d))
timestep = torch.arange(e, device=freqs.device, dtype=torch.float64)
freqs = torch.outer(timestep, freqs).float()
freqs_cis_i = torch.polar(torch.ones_like(freqs), freqs).to(torch.complex64) # complex64
freqs_cis.append(freqs_cis_i)
return freqs_cis

View File

@ -321,7 +321,7 @@ class SelfAttention(nn.Module):
class RMSNorm(torch.nn.Module):
def __init__(
self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None
self, dim: int, elementwise_affine: bool = False, eps: float = 1e-6, device=None, dtype=None, **kwargs
):
"""
Initialize the RMSNorm normalization layer.

View File

@ -34,6 +34,7 @@ import comfy.ldm.flux.model
import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.lumina.model
import comfy.model_management
import comfy.patcher_extension
@ -904,3 +905,19 @@ class CosmosVideo(BaseModel):
latent_image = latent_image + noise
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out

View File

@ -239,7 +239,7 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["micro_condition"] = False
return dit_config
if '{}blocks.block0.blocks.0.block.attn.to_q.0.weight'.format(key_prefix) in state_dict_keys:
if '{}blocks.block0.blocks.0.block.attn.to_q.0.weight'.format(key_prefix) in state_dict_keys: # Cosmos
dit_config = {}
dit_config["image_model"] = "cosmos"
dit_config["max_img_h"] = 240
@ -284,6 +284,21 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["extra_per_block_abs_pos_emb_type"] = "learnable"
return dit_config
if '{}cap_embedder.1.weight'.format(key_prefix) in state_dict_keys: # Lumina 2
dit_config = {}
dit_config["image_model"] = "lumina2"
dit_config["patch_size"] = 2
dit_config["in_channels"] = 16
dit_config["dim"] = 2304
dit_config["cap_feat_dim"] = 2304
dit_config["n_layers"] = 26
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["qk_norm"] = True
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@ -36,6 +36,7 @@ import comfy.text_encoders.genmo
import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.model_patcher
import comfy.lora
@ -657,6 +658,7 @@ class CLIPType(Enum):
HUNYUAN_VIDEO = 9
PIXART = 10
COSMOS = 11
LUMINA2 = 12
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -675,6 +677,7 @@ class TEModel(Enum):
T5_BASE = 6
LLAMA3_8 = 7
T5_XXL_OLD = 8
GEMMA_2_2B = 9
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -693,6 +696,8 @@ def detect_te_model(sd):
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
if "model.layers.0.post_attention_layernorm.weight" in sd:
return TEModel.LLAMA3_8
return None
@ -730,6 +735,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
if "text_projection" in clip_data[i]:
clip_data[i]["text_projection.weight"] = clip_data[i]["text_projection"].transpose(0, 1) #old models saved with the CLIPSave node
tokenizer_data = {}
clip_target = EmptyClass()
clip_target.params = {}
if len(clip_data) == 1:
@ -769,6 +775,10 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif te_model == TEModel.T5_BASE:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
elif te_model == TEModel.GEMMA_2_2B:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else:
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
@ -798,7 +808,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
parameters = 0
tokenizer_data = {}
for c in clip_data:
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)

View File

@ -421,10 +421,10 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = max_length
self.min_length = min_length
self.end_token = None
@ -585,9 +585,14 @@ class SDTokenizer:
return {}
class SD1Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer):
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
def __init__(self, embedding_directory=None, tokenizer_data={}, clip_name="l", tokenizer=SDTokenizer, name=None):
if name is not None:
self.clip_name = name
self.clip = "{}".format(self.clip_name)
else:
self.clip_name = clip_name
self.clip = "clip_{}".format(self.clip_name)
tokenizer = tokenizer_data.get("{}_tokenizer_class".format(self.clip), tokenizer)
setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data))
@ -600,7 +605,7 @@ class SD1Tokenizer:
return getattr(self, self.clip).untokenize(token_weight_pair)
def state_dict(self):
return {}
return getattr(self, self.clip).state_dict()
class SD1CheckpointClipModel(SDClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):

View File

@ -15,6 +15,7 @@ import comfy.text_encoders.genmo
import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
from . import supported_models_base
from . import latent_formats
@ -865,6 +866,35 @@ class CosmosI2V(CosmosT2V):
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
return out
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V]
class Lumina2(supported_models_base.BASE):
unet_config = {
"image_model": "lumina2",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 6.0,
}
memory_usage_factor = 1.2
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Lumina2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2]
models += [SVD_img2vid]

View File

@ -1,6 +1,5 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataclasses import dataclass
from typing import Optional, Any
@ -21,15 +20,41 @@ class Llama2Config:
max_position_embeddings: int = 8192
rms_norm_eps: float = 1e-5
rope_theta: float = 500000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
@dataclass
class Gemma2_2B_Config:
vocab_size: int = 256000
hidden_size: int = 2304
intermediate_size: int = 9216
num_hidden_layers: int = 26
num_attention_heads: int = 8
num_key_value_heads: int = 4
max_position_embeddings: int = 8192
rms_norm_eps: float = 1e-6
rope_theta: float = 10000.0
transformer_type: str = "gemma2"
head_dim = 256
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, device=None, dtype=None):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
self.add = add
def forward(self, x: torch.Tensor):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)
w = self.weight
if self.add:
w = w + 1.0
return comfy.ldm.common_dit.rms_norm(x, w, self.eps)
def rotate_half(x):
@ -68,13 +93,15 @@ class Attention(nn.Module):
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
self.hidden_size = config.hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.head_dim = config.head_dim
self.inner_size = self.num_heads * self.head_dim
ops = ops or nn
self.q_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.o_proj = ops.Linear(config.hidden_size, config.hidden_size, bias=False, device=device, dtype=dtype)
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(
self,
@ -84,7 +111,6 @@ class Attention(nn.Module):
optimized_attention=None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
xk = self.k_proj(hidden_states)
xv = self.v_proj(hidden_states)
@ -108,9 +134,13 @@ class MLP(nn.Module):
self.gate_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.up_proj = ops.Linear(config.hidden_size, config.intermediate_size, bias=False, device=device, dtype=dtype)
self.down_proj = ops.Linear(config.intermediate_size, config.hidden_size, bias=False, device=device, dtype=dtype)
if config.mlp_activation == "silu":
self.activation = torch.nn.functional.silu
elif config.mlp_activation == "gelu_pytorch_tanh":
self.activation = lambda a: torch.nn.functional.gelu(a, approximate="tanh")
def forward(self, x):
return self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x))
return self.down_proj(self.activation(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
@ -146,6 +176,45 @@ class TransformerBlock(nn.Module):
return x
class TransformerBlockGemma2(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
super().__init__()
self.self_attn = Attention(config, device=device, dtype=dtype, ops=ops)
self.mlp = MLP(config, device=device, dtype=dtype, ops=ops)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
self.pre_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
self.post_feedforward_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
)
x = self.post_attention_layernorm(x)
x = residual + x
# MLP
residual = x
x = self.pre_feedforward_layernorm(x)
x = self.mlp(x)
x = self.post_feedforward_layernorm(x)
x = residual + x
return x
class Llama2_(nn.Module):
def __init__(self, config, device=None, dtype=None, ops=None):
super().__init__()
@ -158,17 +227,27 @@ class Llama2_(nn.Module):
device=device,
dtype=dtype
)
if self.config.transformer_type == "gemma2":
transformer = TransformerBlockGemma2
self.normalize_in = True
else:
transformer = TransformerBlock
self.normalize_in = False
self.layers = nn.ModuleList([
TransformerBlock(config, device=device, dtype=dtype, ops=ops)
transformer(config, device=device, dtype=dtype, ops=ops)
for _ in range(config.num_hidden_layers)
])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, device=device, dtype=dtype)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
x = self.embed_tokens(x, out_dtype=dtype)
freqs_cis = precompute_freqs_cis(self.config.hidden_size // self.config.num_attention_heads,
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
freqs_cis = precompute_freqs_cis(self.config.head_dim,
x.shape[1],
self.config.rope_theta,
device=x.device)
@ -206,16 +285,7 @@ class Llama2_(nn.Module):
return x, intermediate
class Llama2(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Llama2Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class BaseLlama:
def get_input_embeddings(self):
return self.model.embed_tokens
@ -224,3 +294,23 @@ class Llama2(torch.nn.Module):
def forward(self, input_ids, *args, **kwargs):
return self.model(input_ids, *args, **kwargs)
class Llama2(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Llama2Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Gemma2_2B_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype

View File

@ -0,0 +1,44 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.llama
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LuminaTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="gemma2_2b", tokenizer=Gemma2BTokenizer)
class Gemma2_2BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-2, dtype=None, attention_mask=True, model_options={}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 2, "pad": 0}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Gemma2_2B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class LuminaModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="gemma2_2b", clip_model=Gemma2_2BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
class LuminaTEModel_(LuminaModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return LuminaTEModel_

View File

@ -1,21 +1,21 @@
import torch
class SPieceTokenizer:
add_eos = True
@staticmethod
def from_pretrained(path):
return SPieceTokenizer(path)
def from_pretrained(path, **kwargs):
return SPieceTokenizer(path, **kwargs)
def __init__(self, tokenizer_path):
def __init__(self, tokenizer_path, add_bos=False, add_eos=True):
self.add_bos = add_bos
self.add_eos = add_eos
import sentencepiece
if torch.is_tensor(tokenizer_path):
tokenizer_path = tokenizer_path.numpy().tobytes()
if isinstance(tokenizer_path, bytes):
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_eos=self.add_eos)
self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
else:
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_eos=self.add_eos)
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_bos=self.add_bos, add_eos=self.add_eos)
def get_vocab(self):
out = {}

View File

@ -914,7 +914,7 @@ class CLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos"], ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
@ -941,6 +941,8 @@ class CLIPLoader:
clip_type = comfy.sd.CLIPType.PIXART
elif type == "cosmos":
clip_type = comfy.sd.CLIPType.COSMOS
elif type == "lumina2":
clip_type = comfy.sd.CLIPType.LUMINA2
else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION