Add support for simple tooltips (#3842)

* Add support for simple tooltips

* Fix overflow

* Add tooltips for nodes in the default workflow

* new line

* Prevent potential crash

* PR feedback

* Hide tooltip when clicking (e.g. combo widget)

* Refactor tooltips, add node level support

* Fix

* move

* Fix test (and undo last change)

* Fixed indent

* Fix dom widgets, dont show tooltip if not over canvas
This commit is contained in:
pythongosssss 2024-08-14 06:22:10 +01:00 committed by GitHub
parent a5af64d3ce
commit e60e19b175
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 225 additions and 33 deletions

View File

@ -47,11 +47,18 @@ MAX_RESOLUTION=16384
class CLIPTextEncode: class CLIPTextEncode:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": {"text": ("STRING", {"multiline": True, "dynamicPrompts": True}), "clip": ("CLIP", )}} return {
"required": {
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
"clip": ("CLIP", {"tooltip": "The CLIP model used for encoding the text."})
}
}
RETURN_TYPES = ("CONDITIONING",) RETURN_TYPES = ("CONDITIONING",)
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
FUNCTION = "encode" FUNCTION = "encode"
CATEGORY = "conditioning" CATEGORY = "conditioning"
DESCRIPTION = "Encodes a text prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
def encode(self, clip, text): def encode(self, clip, text):
tokens = clip.tokenize(text) tokens = clip.tokenize(text)
@ -260,11 +267,18 @@ class ConditioningSetTimestepRange:
class VAEDecode: class VAEDecode:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} return {
"required": {
"samples": ("LATENT", {"tooltip": "The latent to be decoded."}),
"vae": ("VAE", {"tooltip": "The VAE model used for decoding the latent."})
}
}
RETURN_TYPES = ("IMAGE",) RETURN_TYPES = ("IMAGE",)
OUTPUT_TOOLTIPS = ("The decoded image.",)
FUNCTION = "decode" FUNCTION = "decode"
CATEGORY = "latent" CATEGORY = "latent"
DESCRIPTION = "Decodes latent images back into pixel space images."
def decode(self, vae, samples): def decode(self, vae, samples):
return (vae.decode(samples["samples"]), ) return (vae.decode(samples["samples"]), )
@ -506,12 +520,19 @@ class CheckpointLoader:
class CheckpointLoaderSimple: class CheckpointLoaderSimple:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ), return {
}} "required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "VAE") RETURN_TYPES = ("MODEL", "CLIP", "VAE")
OUTPUT_TOOLTIPS = ("The model used for denoising latents.",
"The CLIP model used for encoding text prompts.",
"The VAE model used for encoding and decoding images to and from latent space.")
FUNCTION = "load_checkpoint" FUNCTION = "load_checkpoint"
CATEGORY = "loaders" CATEGORY = "loaders"
DESCRIPTION = "Loads a diffusion model checkpoint, diffusion models are used to denoise latents."
def load_checkpoint(self, ckpt_name): def load_checkpoint(self, ckpt_name):
ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name) ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
@ -582,16 +603,22 @@ class LoraLoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",), return {
"clip": ("CLIP", ), "required": {
"lora_name": (folder_paths.get_filename_list("loras"), ), "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}), "clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}), "lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
}} "strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the CLIP model. This value can be negative."}),
}
}
RETURN_TYPES = ("MODEL", "CLIP") RETURN_TYPES = ("MODEL", "CLIP")
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "The modified CLIP model.")
FUNCTION = "load_lora" FUNCTION = "load_lora"
CATEGORY = "loaders" CATEGORY = "loaders"
DESCRIPTION = "LoRAs are used to modify diffusion and CLIP models, altering the way in which latents are denoised such as applying styles. Multiple LoRA nodes can be linked together."
def load_lora(self, model, clip, lora_name, strength_model, strength_clip): def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
if strength_model == 0 and strength_clip == 0: if strength_model == 0 and strength_clip == 0:
@ -1033,13 +1060,19 @@ class EmptyLatentImage:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), return {
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8}), "required": {
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}} "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The width of the latent images in pixels."}),
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The height of the latent images in pixels."}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."})
}
}
RETURN_TYPES = ("LATENT",) RETURN_TYPES = ("LATENT",)
OUTPUT_TOOLTIPS = ("The empty latent image batch.",)
FUNCTION = "generate" FUNCTION = "generate"
CATEGORY = "latent" CATEGORY = "latent"
DESCRIPTION = "Create a new batch of empty latent images to be denoised via sampling."
def generate(self, width, height, batch_size=1): def generate(self, width, height, batch_size=1):
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device) latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
@ -1359,24 +1392,27 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
class KSampler: class KSampler:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": return {
{"model": ("MODEL",), "required": {
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": "The random seed used for creating the noise."}),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
"positive": ("CONDITIONING", ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "The scheduler controls how noise is gradually removed to form the image."}),
"negative": ("CONDITIONING", ), "positive": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to include in the image."}),
"latent_image": ("LATENT", ), "negative": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to exclude from the image."}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "latent_image": ("LATENT", {"tooltip": "The latent image to denoise."}),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of denoising applied, lower values will maintain the structure of the initial image allowing for image to image sampling."}),
} }
} }
RETURN_TYPES = ("LATENT",) RETURN_TYPES = ("LATENT",)
OUTPUT_TOOLTIPS = ("The denoised latent.",)
FUNCTION = "sample" FUNCTION = "sample"
CATEGORY = "sampling" CATEGORY = "sampling"
DESCRIPTION = "Uses the provided model, positive and negative conditioning to denoise the latent image."
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
@ -1424,10 +1460,14 @@ class SaveImage:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": return {
{"images": ("IMAGE", ), "required": {
"filename_prefix": ("STRING", {"default": "ComfyUI"})}, "images": ("IMAGE", {"tooltip": "The images to save."}),
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, "filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
},
"hidden": {
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
},
} }
RETURN_TYPES = () RETURN_TYPES = ()
@ -1436,6 +1476,7 @@ class SaveImage:
OUTPUT_NODE = True OUTPUT_NODE = True
CATEGORY = "image" CATEGORY = "image"
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
filename_prefix += self.prefix_append filename_prefix += self.prefix_append

View File

@ -438,6 +438,9 @@ class PromptServer():
if hasattr(obj_class, 'CATEGORY'): if hasattr(obj_class, 'CATEGORY'):
info['category'] = obj_class.CATEGORY info['category'] = obj_class.CATEGORY
if hasattr(obj_class, 'OUTPUT_TOOLTIPS'):
info['output_tooltips'] = obj_class.OUTPUT_TOOLTIPS
return info return info
@routes.get("/object_info") @routes.get("/object_info")

View File

@ -0,0 +1,122 @@
import { app } from "../../scripts/app.js";
import { $el } from "../../scripts/ui.js";
// Adds support for tooltips
function getHoveredWidget() {
if (!app) {
return;
}
const node = app.canvas.node_over;
if (!node.widgets) return;
const graphPos = app.canvas.graph_mouse;
const x = graphPos[0] - node.pos[0];
const y = graphPos[1] - node.pos[1];
for (const w of node.widgets) {
let widgetWidth, widgetHeight;
if (w.computeSize) {
const sz = w.computeSize();
widgetWidth = sz[0];
widgetHeight = sz[1];
} else {
widgetWidth = w.width || node.size[0];
widgetHeight = LiteGraph.NODE_WIDGET_HEIGHT;
}
if (w.last_y !== undefined && x >= 6 && x <= widgetWidth - 12 && y >= w.last_y && y <= w.last_y + widgetHeight) {
return w;
}
}
}
app.registerExtension({
name: "Comfy.Tooltips",
setup() {
const tooltipEl = $el("div.comfy-graph-tooltip", {
parent: document.body,
});
let idleTimeout;
const hideTooltip = () => {
tooltipEl.style.display = "none";
};
const showTooltip = (tooltip) => {
if (!tooltip) return;
tooltipEl.textContent = tooltip;
tooltipEl.style.display = "block";
tooltipEl.style.left = app.canvas.mouse[0] + "px";
tooltipEl.style.top = app.canvas.mouse[1] + "px";
const rect = tooltipEl.getBoundingClientRect();
if (rect.right > window.innerWidth) {
tooltipEl.style.left = app.canvas.mouse[0] - rect.width + "px";
}
if (rect.top < 0) {
tooltipEl.style.top = app.canvas.mouse[1] + rect.height + "px";
}
};
const getInputTooltip = (nodeData, name) => {
const inputDef = nodeData.input?.required?.[name] ?? nodeData.input?.optional?.[name];
return inputDef?.[1]?.tooltip;
};
const onIdle = () => {
const { canvas } = app;
const node = canvas.node_over;
if (!node) return;
const nodeData = node.constructor.nodeData ?? {};
if (node.constructor.title_mode !== LiteGraph.NO_TITLE && canvas.graph_mouse[1] < node.pos[1]) {
return showTooltip(nodeData.description);
}
if (node.flags?.collapsed) return;
const inputSlot = canvas.isOverNodeInput(node, canvas.graph_mouse[0], canvas.graph_mouse[1], [0, 0]);
if (inputSlot !== -1) {
const inputName = node.inputs[inputSlot].name;
return showTooltip(getInputTooltip(nodeData, inputName));
}
const outputSlot = canvas.isOverNodeOutput(node, canvas.graph_mouse[0], canvas.graph_mouse[1], [0, 0]);
if (outputSlot !== -1) {
return showTooltip(nodeData.output_tooltips?.[outputSlot]);
}
const widget = getHoveredWidget();
// Dont show for DOM widgets, these use native browser tooltips as we dont get proper mouse events on these
if (widget && !widget.element) {
return showTooltip(widget.tooltip ?? getInputTooltip(nodeData, widget.name));
}
};
const onMouseMove = (e) => {
hideTooltip();
clearTimeout(idleTimeout);
if(e.target.nodeName !== "CANVAS") return
idleTimeout = setTimeout(onIdle, 500);
};
app.ui.settings.addSetting({
id: "Comfy.EnableTooltips",
name: "Enable Tooltips",
type: "boolean",
defaultValue: true,
onChange(value) {
if (value) {
window.addEventListener("mousemove", onMouseMove);
window.addEventListener("click", hideTooltip);
} else {
window.removeEventListener("mousemove", onMouseMove);
window.removeEventListener("click", hideTooltip);
}
},
});
},
});

View File

@ -181,7 +181,7 @@ export function mergeIfValid(output, config2, forceUpdate, recreateWidget, confi
const isNumber = config1[0] === "INT" || config1[0] === "FLOAT"; const isNumber = config1[0] === "INT" || config1[0] === "FLOAT";
for (const k of keys.values()) { for (const k of keys.values()) {
if (k !== "default" && k !== "forceInput" && k !== "defaultInput" && k !== "control_after_generate" && k !== "multiline") { if (k !== "default" && k !== "forceInput" && k !== "defaultInput" && k !== "control_after_generate" && k !== "multiline" && k !== "tooltip") {
let v1 = config1[1][k]; let v1 = config1[1][k];
let v2 = config2[1]?.[k]; let v2 = config2[1]?.[k];

View File

@ -1713,9 +1713,10 @@ export class ComfyApp {
for (const o in nodeData["output"]) { for (const o in nodeData["output"]) {
let output = nodeData["output"][o]; let output = nodeData["output"][o];
if(output instanceof Array) output = "COMBO"; if(output instanceof Array) output = "COMBO";
const outputTooltip = nodeData["output_tooltips"]?.[o];
const outputName = nodeData["output_name"][o] || output; const outputName = nodeData["output_name"][o] || output;
const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ; const outputShape = nodeData["output_is_list"][o] ? LiteGraph.GRID_SHAPE : LiteGraph.CIRCLE_SHAPE ;
this.addOutput(outputName, output, { shape: outputShape }); this.addOutput(outputName, output, { shape: outputShape, tooltip: outputTooltip });
} }
const s = this.computeSize(); const s = this.computeSize();

View File

@ -223,6 +223,12 @@ LGraphNode.prototype.addDOMWidget = function (name, type, element, options) {
document.addEventListener("mousedown", mouseDownHandler); document.addEventListener("mousedown", mouseDownHandler);
} }
const { nodeData } = this.constructor;
const tooltip = (nodeData?.input.required?.[name] ?? nodeData?.input.optional?.[name])?.[1]?.tooltip;
if (tooltip && !element.title) {
element.title = tooltip;
}
const widget = { const widget = {
type, type,
name, name,

View File

@ -75,6 +75,7 @@ export function addValueControlWidgets(node, targetWidget, defaultValue = "rando
serialize: false, // Don't include this in prompt. serialize: false, // Don't include this in prompt.
} }
); );
valueControl.tooltip = "Allows the linked widget to be changed automatically, for example randomizing the noise seed.";
valueControl[IS_CONTROL_WIDGET] = true; valueControl[IS_CONTROL_WIDGET] = true;
updateControlWidgetLabel(valueControl); updateControlWidgetLabel(valueControl);
widgets.push(valueControl); widgets.push(valueControl);
@ -95,6 +96,7 @@ export function addValueControlWidgets(node, targetWidget, defaultValue = "rando
} }
); );
updateControlWidgetLabel(comboFilter); updateControlWidgetLabel(comboFilter);
comboFilter.tooltip = "Allows for filtering the list of values when changing the value via the control generate mode. Allows for RegEx matches in the format /abc/ to only filter to values containing 'abc'."
widgets.push(comboFilter); widgets.push(comboFilter);
} }

View File

@ -645,3 +645,20 @@ dialog::backdrop {
audio.comfy-audio.empty-audio-widget { audio.comfy-audio.empty-audio-widget {
display: none; display: none;
} }
.comfy-graph-tooltip {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
display: none;
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}