Better per model memory usage estimations.

This commit is contained in:
comfyanonymous 2024-08-02 18:08:21 -04:00
parent 3a9ee995cf
commit ea03c9dcd2
3 changed files with 17 additions and 25 deletions

View File

@ -94,6 +94,7 @@ class BaseModel(torch.nn.Module):
self.concat_keys = () self.concat_keys = ()
logging.info("model_type {}".format(model_type.name)) logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels)) logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
sigma = t sigma = t
@ -252,11 +253,11 @@ class BaseModel(torch.nn.Module):
dtype = self.manual_cast_dtype dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked #TODO: this needs to be tweaked
area = input_shape[0] * math.prod(input_shape[2:]) area = input_shape[0] * math.prod(input_shape[2:])
return (area * comfy.model_management.dtype_size(dtype) * 0.01) * (1024 * 1024) return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else: else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * math.prod(input_shape[2:]) area = input_shape[0] * math.prod(input_shape[2:])
return (area * 0.3) * (1024 * 1024) return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
@ -354,6 +355,7 @@ class SDXL(BaseModel):
flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return torch.cat((clip_pooled.to(flat.device), flat), dim=1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1)
class SVD_img2vid(BaseModel): class SVD_img2vid(BaseModel):
def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None):
super().__init__(model_config, model_type, device=device) super().__init__(model_config, model_type, device=device)
@ -594,17 +596,6 @@ class SD3(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out return out
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this probably needs to be tweaked
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * comfy.model_management.dtype_size(dtype) * 0.012) * (1024 * 1024)
else:
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * 0.3) * (1024 * 1024)
class AuraFlow(BaseModel): class AuraFlow(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None): def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
@ -702,15 +693,3 @@ class Flux(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)])) out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)]))
return out return out
def memory_required(self, input_shape):
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this probably needs to be tweaked
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * comfy.model_management.dtype_size(dtype) * 0.026) * (1024 * 1024)
else:
area = input_shape[0] * input_shape[2] * input_shape[3]
return (area * 0.3) * (1024 * 1024)

View File

@ -31,6 +31,7 @@ class SD15(supported_models_base.BASE):
} }
latent_format = latent_formats.SD15 latent_format = latent_formats.SD15
memory_usage_factor = 1.0
def process_clip_state_dict(self, state_dict): def process_clip_state_dict(self, state_dict):
k = list(state_dict.keys()) k = list(state_dict.keys())
@ -77,6 +78,7 @@ class SD20(supported_models_base.BASE):
} }
latent_format = latent_formats.SD15 latent_format = latent_formats.SD15
memory_usage_factor = 1.0
def model_type(self, state_dict, prefix=""): def model_type(self, state_dict, prefix=""):
if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction if self.unet_config["in_channels"] == 4: #SD2.0 inpainting models are not v prediction
@ -140,6 +142,7 @@ class SDXLRefiner(supported_models_base.BASE):
} }
latent_format = latent_formats.SDXL latent_format = latent_formats.SDXL
memory_usage_factor = 1.0
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXLRefiner(self, device=device) return model_base.SDXLRefiner(self, device=device)
@ -178,6 +181,8 @@ class SDXL(supported_models_base.BASE):
latent_format = latent_formats.SDXL latent_format = latent_formats.SDXL
memory_usage_factor = 0.7
def model_type(self, state_dict, prefix=""): def model_type(self, state_dict, prefix=""):
if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5 if 'edm_mean' in state_dict and 'edm_std' in state_dict: #Playground V2.5
self.latent_format = latent_formats.SDXL_Playground_2_5() self.latent_format = latent_formats.SDXL_Playground_2_5()
@ -505,6 +510,9 @@ class SD3(supported_models_base.BASE):
unet_extra_config = {} unet_extra_config = {}
latent_format = latent_formats.SD3 latent_format = latent_formats.SD3
memory_usage_factor = 1.2
text_encoder_key_prefix = ["text_encoders."] text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
@ -631,6 +639,9 @@ class Flux(supported_models_base.BASE):
unet_extra_config = {} unet_extra_config = {}
latent_format = latent_formats.Flux latent_format = latent_formats.Flux
memory_usage_factor = 2.6
supported_inference_dtypes = [torch.bfloat16, torch.float32] supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."] vae_key_prefix = ["vae."]

View File

@ -27,6 +27,8 @@ class BASE:
text_encoder_key_prefix = ["cond_stage_model."] text_encoder_key_prefix = ["cond_stage_model."]
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32] supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
memory_usage_factor = 2.0
manual_cast_dtype = None manual_cast_dtype = None
@classmethod @classmethod