Auto load model in lowvram if not enough memory.

This commit is contained in:
comfyanonymous 2023-05-30 12:36:41 -04:00
parent 560e9f7a43
commit eb448dd8e1
2 changed files with 45 additions and 19 deletions

View File

@ -15,9 +15,8 @@ vram_state = VRAMState.NORMAL_VRAM
set_vram_to = VRAMState.NORMAL_VRAM
total_vram = 0
total_vram_available_mb = -1
accelerate_enabled = False
lowvram_available = True
xpu_available = False
directml_enabled = False
@ -31,11 +30,12 @@ if args.directml is not None:
directml_device = torch_directml.device(device_index)
print("Using directml with device:", torch_directml.device_name(device_index))
# torch_directml.disable_tiled_resources(True)
lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default.
try:
import torch
if directml_enabled:
total_vram = 4097 #TODO
pass #TODO
else:
try:
import intel_extension_for_pytorch as ipex
@ -46,7 +46,7 @@ try:
total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024)
total_ram = psutil.virtual_memory().total / (1024 * 1024)
if not args.normalvram and not args.cpu:
if total_vram <= 4096:
if lowvram_available and total_vram <= 4096:
print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram")
set_vram_to = VRAMState.LOW_VRAM
elif total_vram > total_ram * 1.1 and total_vram > 14336:
@ -92,6 +92,7 @@ if ENABLE_PYTORCH_ATTENTION:
if args.lowvram:
set_vram_to = VRAMState.LOW_VRAM
lowvram_available = True
elif args.novram:
set_vram_to = VRAMState.NO_VRAM
elif args.highvram:
@ -103,18 +104,18 @@ if args.force_fp32:
FORCE_FP32 = True
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
if lowvram_available:
try:
import accelerate
accelerate_enabled = True
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM):
vram_state = set_vram_to
except Exception as e:
import traceback
print(traceback.format_exc())
print("ERROR: COULD NOT ENABLE LOW VRAM MODE.")
print("ERROR: LOW VRAM MODE NEEDS accelerate.")
lowvram_available = False
total_vram_available_mb = (total_vram - 1024) // 2
total_vram_available_mb = int(max(256, total_vram_available_mb))
try:
if torch.backends.mps.is_available():
@ -199,22 +200,33 @@ def load_model_gpu(model):
model.unpatch_model()
raise e
model.model_patches_to(get_torch_device())
torch_dev = get_torch_device()
model.model_patches_to(torch_dev)
vram_set_state = vram_state
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
model_size = model.model_size()
current_free_mem = get_free_memory(torch_dev)
lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.2 ))
if model_size > (current_free_mem - (512 * 1024 * 1024)): #only switch to lowvram if really necessary
vram_set_state = VRAMState.LOW_VRAM
current_loaded_model = model
if vram_state == VRAMState.CPU:
if vram_set_state == VRAMState.CPU:
pass
elif vram_state == VRAMState.MPS:
elif vram_set_state == VRAMState.MPS:
mps_device = torch.device("mps")
real_model.to(mps_device)
pass
elif vram_state == VRAMState.NORMAL_VRAM or vram_state == VRAMState.HIGH_VRAM:
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM:
model_accelerated = False
real_model.to(get_torch_device())
else:
if vram_state == VRAMState.NO_VRAM:
if vram_set_state == VRAMState.NO_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
elif vram_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"})
elif vram_set_state == VRAMState.LOW_VRAM:
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
model_accelerated = True

View File

@ -286,15 +286,29 @@ def model_lora_keys(model, key_map={}):
return key_map
class ModelPatcher:
def __init__(self, model):
def __init__(self, model, size=0):
self.size = size
self.model = model
self.patches = []
self.backup = {}
self.model_options = {"transformer_options":{}}
self.model_size()
def model_size(self):
if self.size > 0:
return self.size
model_sd = self.model.state_dict()
size = 0
for k in model_sd:
t = model_sd[k]
size += t.nelement() * t.element_size()
self.size = size
return size
def clone(self):
n = ModelPatcher(self.model)
n = ModelPatcher(self.model, self.size)
n.patches = self.patches[:]
n.model_options = copy.deepcopy(self.model_options)
return n