Fix model patches not working in custom sampling scheduler nodes.

This commit is contained in:
comfyanonymous 2024-01-03 12:16:30 -05:00
parent a7874d1a8b
commit ef4f6037cb
2 changed files with 30 additions and 25 deletions

View File

@ -174,40 +174,41 @@ class ModelPatcher:
sd.pop(k) sd.pop(k)
return sd return sd
def patch_model(self, device_to=None): def patch_model(self, device_to=None, patch_weights=True):
for k in self.object_patches: for k in self.object_patches:
old = getattr(self.model, k) old = getattr(self.model, k)
if k not in self.object_patches_backup: if k not in self.object_patches_backup:
self.object_patches_backup[k] = old self.object_patches_backup[k] = old
setattr(self.model, k, self.object_patches[k]) setattr(self.model, k, self.object_patches[k])
model_sd = self.model_state_dict() if patch_weights:
for key in self.patches: model_sd = self.model_state_dict()
if key not in model_sd: for key in self.patches:
print("could not patch. key doesn't exist in model:", key) if key not in model_sd:
continue print("could not patch. key doesn't exist in model:", key)
continue
weight = model_sd[key] weight = model_sd[key]
inplace_update = self.weight_inplace_update inplace_update = self.weight_inplace_update
if key not in self.backup: if key not in self.backup:
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update) self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr(self.model, key, out_weight)
del temp_weight
if device_to is not None: if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True) self.model.to(device_to)
else: self.current_device = device_to
temp_weight = weight.to(torch.float32, copy=True)
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
if inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr(self.model, key, out_weight)
del temp_weight
if device_to is not None:
self.model.to(device_to)
self.current_device = device_to
return self.model return self.model

View File

@ -26,7 +26,9 @@ class BasicScheduler:
if denoise < 1.0: if denoise < 1.0:
total_steps = int(steps/denoise) total_steps = int(steps/denoise)
sigmas = comfy.samplers.calculate_sigmas_scheduler(model.model, scheduler, total_steps).cpu() inner_model = model.patch_model(patch_weights=False)
sigmas = comfy.samplers.calculate_sigmas_scheduler(inner_model, scheduler, total_steps).cpu()
model.unpatch_model()
sigmas = sigmas[-(steps + 1):] sigmas = sigmas[-(steps + 1):]
return (sigmas, ) return (sigmas, )
@ -104,7 +106,9 @@ class SDTurboScheduler:
def get_sigmas(self, model, steps, denoise): def get_sigmas(self, model, steps, denoise):
start_step = 10 - int(10 * denoise) start_step = 10 - int(10 * denoise)
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps] timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
sigmas = model.model.model_sampling.sigma(timesteps) inner_model = model.patch_model(patch_weights=False)
sigmas = inner_model.model_sampling.sigma(timesteps)
model.unpatch_model()
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])]) sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
return (sigmas, ) return (sigmas, )