Support attention masking in CLIP implementation.

This commit is contained in:
comfyanonymous 2023-12-07 02:51:02 -05:00
parent 248d9125b0
commit efb704c758

View File

@ -100,8 +100,12 @@ class CLIPTextModel_(torch.nn.Module):
def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
x = self.embeddings(input_tokens) x = self.embeddings(input_tokens)
#TODO: attention_mask mask = None
x, i = self.encoder(x, intermediate_output=intermediate_output) if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).unsqueeze(1).unsqueeze(1).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
x = self.final_layer_norm(x) x = self.final_layer_norm(x)
if i is not None and final_layer_norm_intermediate: if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i) i = self.final_layer_norm(i)