mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Save memory by storing text encoder weights in fp16 in most situations.
Do inference in fp32 to make sure quality stays the exact same.
This commit is contained in:
parent
d7b3b0f8c1
commit
f081017c1a
@ -433,7 +433,7 @@ def text_encoder_device():
|
|||||||
return get_torch_device()
|
return get_torch_device()
|
||||||
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM:
|
||||||
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
|
#NOTE: on a Ryzen 5 7600X with 4080 it's faster to shift to GPU
|
||||||
if torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
|
if should_use_fp16() or torch.get_num_threads() < 8: #leaving the text encoder on the CPU is faster than shifting it if the CPU is fast enough.
|
||||||
return get_torch_device()
|
return get_torch_device()
|
||||||
else:
|
else:
|
||||||
return torch.device("cpu")
|
return torch.device("cpu")
|
||||||
|
@ -546,11 +546,8 @@ class CLIP:
|
|||||||
offload_device = model_management.text_encoder_offload_device()
|
offload_device = model_management.text_encoder_offload_device()
|
||||||
params['device'] = load_device
|
params['device'] = load_device
|
||||||
self.cond_stage_model = clip(**(params))
|
self.cond_stage_model = clip(**(params))
|
||||||
#TODO: make sure this doesn't have a quality loss before enabling.
|
if model_management.should_use_fp16(load_device):
|
||||||
# if model_management.should_use_fp16(load_device):
|
self.cond_stage_model.half()
|
||||||
# self.cond_stage_model.half()
|
|
||||||
|
|
||||||
self.cond_stage_model = self.cond_stage_model.to()
|
|
||||||
|
|
||||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||||
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||||
|
@ -137,9 +137,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||||||
if backup_embeds.weight.dtype != torch.float32:
|
if backup_embeds.weight.dtype != torch.float32:
|
||||||
precision_scope = torch.autocast
|
precision_scope = torch.autocast
|
||||||
else:
|
else:
|
||||||
precision_scope = contextlib.nullcontext
|
precision_scope = lambda a, b: contextlib.nullcontext(a)
|
||||||
|
|
||||||
with precision_scope(model_management.get_autocast_device(device)):
|
with precision_scope(model_management.get_autocast_device(device), torch.float32):
|
||||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||||
self.transformer.set_input_embeddings(backup_embeds)
|
self.transformer.set_input_embeddings(backup_embeds)
|
||||||
|
|
||||||
|
@ -5,7 +5,6 @@ import { app } from "../../scripts/app.js";
|
|||||||
app.registerExtension({
|
app.registerExtension({
|
||||||
name: "Comfy.UploadImage",
|
name: "Comfy.UploadImage",
|
||||||
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
||||||
console.log(nodeData);
|
|
||||||
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
|
if (nodeData?.input?.required?.image?.[1]?.image_upload === true) {
|
||||||
nodeData.input.required.upload = ["IMAGEUPLOAD"];
|
nodeData.input.required.upload = ["IMAGEUPLOAD"];
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user