SamplerCustomAdvanced node.

This node enables the creation of nodes to change the guider/denoiser and
the noise algorithm.
This commit is contained in:
comfyanonymous 2024-04-04 01:32:25 -04:00
parent 0542088ef8
commit f117566299

View File

@ -310,6 +310,24 @@ class SamplerDPMAdaptative:
"s_noise":s_noise }) "s_noise":s_noise })
return (sampler, ) return (sampler, )
class Noise_EmptyNoise:
def __init__(self):
self.seed = 0
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
return torch.zeros(shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
class Noise_RandomNoise:
def __init__(self, seed):
self.seed = seed
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds)
class SamplerCustom: class SamplerCustom:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -337,10 +355,9 @@ class SamplerCustom:
latent = latent_image latent = latent_image
latent_image = latent["samples"] latent_image = latent["samples"]
if not add_noise: if not add_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") noise = Noise_EmptyNoise().generate_noise(latent)
else: else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None noise = Noise_RandomNoise(noise_seed).generate_noise(latent)
noise = comfy.sample.prepare_noise(latent_image, noise_seed, batch_inds)
noise_mask = None noise_mask = None
if "noise_mask" in latent: if "noise_mask" in latent:
@ -361,6 +378,100 @@ class SamplerCustom:
out_denoised = out out_denoised = out
return (out, out_denoised) return (out, out_denoised)
class CFGGuider:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"model": ("MODEL",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
}
}
RETURN_TYPES = ("GUIDER",)
FUNCTION = "get_guider"
CATEGORY = "sampling/custom_sampling/guiders"
def get_guider(self, model, positive, negative, cfg):
guider = comfy.samplers.CFGGuider(model)
guider.set_conds({"positive": positive, "negative": negative})
guider.set_cfg(cfg)
return (guider,)
class DisableNoise:
@classmethod
def INPUT_TYPES(s):
return {"required":{
}
}
RETURN_TYPES = ("NOISE",)
FUNCTION = "get_noise"
CATEGORY = "sampling/custom_sampling/noise"
def get_noise(self, noise_seed):
return (Noise_EmptyNoise(),)
class RandomNoise(DisableNoise):
@classmethod
def INPUT_TYPES(s):
return {"required":{
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
def get_noise(self, noise_seed):
return (Noise_RandomNoise(noise_seed),)
class SamplerCustomAdvanced:
@classmethod
def INPUT_TYPES(s):
return {"required":
{"noise": ("NOISE", ),
"guider": ("GUIDER", ),
"sampler": ("SAMPLER", ),
"sigmas": ("SIGMAS", ),
"latent_image": ("LATENT", ),
}
}
RETURN_TYPES = ("LATENT","LATENT")
RETURN_NAMES = ("output", "denoised_output")
FUNCTION = "sample"
CATEGORY = "sampling/custom_sampling"
def sample(self, noise, guider, sampler, sigmas, latent_image):
latent = latent_image
latent_image = latent["samples"]
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
x0_output = {}
callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
samples = samples.to(comfy.model_management.intermediate_device())
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
else:
out_denoised = out
return (out, out_denoised)
NODE_CLASS_MAPPINGS = { NODE_CLASS_MAPPINGS = {
"SamplerCustom": SamplerCustom, "SamplerCustom": SamplerCustom,
"BasicScheduler": BasicScheduler, "BasicScheduler": BasicScheduler,
@ -378,4 +489,9 @@ NODE_CLASS_MAPPINGS = {
"SamplerDPMAdaptative": SamplerDPMAdaptative, "SamplerDPMAdaptative": SamplerDPMAdaptative,
"SplitSigmas": SplitSigmas, "SplitSigmas": SplitSigmas,
"FlipSigmas": FlipSigmas, "FlipSigmas": FlipSigmas,
"CFGGuider": CFGGuider,
"RandomNoise": RandomNoise,
"DisableNoise": DisableNoise,
"SamplerCustomAdvanced": SamplerCustomAdvanced,
} }