mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
.sigma and .timestep now return tensors on the same device as the input.
This commit is contained in:
parent
488de0b4df
commit
f30b992b18
@ -65,15 +65,15 @@ class ModelSamplingDiscrete(torch.nn.Module):
|
||||
def timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape)
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device)
|
||||
|
||||
def sigma(self, timestep):
|
||||
t = torch.clamp(timestep.float(), min=0, max=(len(self.sigmas) - 1))
|
||||
t = torch.clamp(timestep.float().to(self.log_sigmas.device), min=0, max=(len(self.sigmas) - 1))
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp()
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
|
@ -56,15 +56,15 @@ class ModelSamplingDiscreteDistilled(torch.nn.Module):
|
||||
def timestep(self, sigma):
|
||||
log_sigma = sigma.log()
|
||||
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
|
||||
return dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)
|
||||
return (dists.abs().argmin(dim=0).view(sigma.shape) * self.skip_steps + (self.skip_steps - 1)).to(sigma.device)
|
||||
|
||||
def sigma(self, timestep):
|
||||
t = torch.clamp(((timestep - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
|
||||
t = torch.clamp(((timestep.float().to(self.log_sigmas.device) - (self.skip_steps - 1)) / self.skip_steps).float(), min=0, max=(len(self.sigmas) - 1))
|
||||
low_idx = t.floor().long()
|
||||
high_idx = t.ceil().long()
|
||||
w = t.frac()
|
||||
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
|
||||
return log_sigma.exp()
|
||||
return log_sigma.exp().to(timestep.device)
|
||||
|
||||
def percent_to_sigma(self, percent):
|
||||
if percent <= 0.0:
|
||||
|
Loading…
Reference in New Issue
Block a user