mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Add noise augmentation setting to unCLIPConditioning.
This commit is contained in:
parent
72f9235a49
commit
f50b1fec69
@ -348,17 +348,27 @@ def encode_adm(noise_augmentor, conds, batch_size, device):
|
||||
if 'adm' in x[1]:
|
||||
adm_inputs = []
|
||||
weights = []
|
||||
noise_aug = []
|
||||
adm_in = x[1]["adm"]
|
||||
for adm_c in adm_in:
|
||||
adm_cond = adm_c[0].image_embeds
|
||||
weight = adm_c[1]
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([0], device=device))
|
||||
noise_augment = adm_c[2]
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight
|
||||
weights.append(weight)
|
||||
noise_aug.append(noise_augment)
|
||||
adm_inputs.append(adm_out)
|
||||
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: Apply Noise to Embedding Mix
|
||||
if len(noise_aug) > 1:
|
||||
adm_out = torch.stack(adm_inputs).sum(0)
|
||||
#TODO: add a way to control this
|
||||
noise_augment = 0.05
|
||||
noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment)
|
||||
print(noise_level)
|
||||
c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device))
|
||||
adm_out = torch.cat((c_adm, noise_level_emb), 1)
|
||||
else:
|
||||
adm_out = torch.zeros((1, noise_augmentor.time_embed.dim * 2), device=device)
|
||||
x[1] = x[1].copy()
|
||||
|
5
nodes.py
5
nodes.py
@ -445,17 +445,18 @@ class unCLIPConditioning:
|
||||
return {"required": {"conditioning": ("CONDITIONING", ),
|
||||
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
||||
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "apply_adm"
|
||||
|
||||
CATEGORY = "_for_testing/unclip"
|
||||
|
||||
def apply_adm(self, conditioning, clip_vision_output, strength):
|
||||
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
|
||||
c = []
|
||||
for t in conditioning:
|
||||
o = t[1].copy()
|
||||
x = (clip_vision_output, strength)
|
||||
x = (clip_vision_output, strength, noise_augmentation)
|
||||
if "adm" in o:
|
||||
o["adm"] = o["adm"][:] + [x]
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user