Basic SD3 controlnet implementation.

Still missing the node to properly use it.
This commit is contained in:
comfyanonymous 2024-06-25 23:40:44 -04:00
parent 66aaa14001
commit f8f7568d03
5 changed files with 165 additions and 15 deletions

91
comfy/cldm/mmdit.py Normal file
View File

@ -0,0 +1,91 @@
import torch
from typing import Dict, Optional
import comfy.ldm.modules.diffusionmodules.mmdit
import comfy.latent_formats
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
def __init__(
self,
num_blocks = None,
dtype = None,
device = None,
operations = None,
**kwargs,
):
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.joint_blocks)):
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
None,
self.patch_size,
self.in_channels,
self.hidden_size,
bias=True,
strict_img_size=False,
dtype=dtype,
device=device,
operations=operations
)
self.latent_format = comfy.latent_formats.SD3()
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
hint = None,
) -> torch.Tensor:
#weird sd3 controlnet specific stuff
hint = hint * self.latent_format.scale_factor # self.latent_format.process_in(hint)
y = torch.zeros_like(y)
if self.context_processor is not None:
context = self.context_processor(context)
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
x += self.pos_embed_input(hint)
c = self.t_embedder(timesteps, dtype=x.dtype)
if y is not None and self.y_embedder is not None:
y = self.y_embedder(y)
c = c + y
if context is not None:
context = self.context_embedder(context)
if self.register_length > 0:
context = torch.cat(
(
repeat(self.register, "1 ... -> b ...", b=x.shape[0]),
default(context, torch.Tensor([]).type_as(x)),
),
1,
)
output = []
blocks = len(self.joint_blocks)
for i in range(blocks):
context, x = self.joint_blocks[i](
context,
x,
c=c,
use_checkpoint=self.use_checkpoint,
)
out = self.controlnet_blocks[i](x)
count = self.depth // blocks
if i == blocks - 1:
count -= 1
for j in range(count):
output.append(out)
return {"output": output}

View File

@ -11,6 +11,7 @@ import comfy.ops
import comfy.cldm.cldm import comfy.cldm.cldm
import comfy.t2i_adapter.adapter import comfy.t2i_adapter.adapter
import comfy.ldm.cascade.controlnet import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
def broadcast_image_to(tensor, target_batch_size, batched_number): def broadcast_image_to(tensor, target_batch_size, batched_number):
@ -94,13 +95,17 @@ class ControlBase:
for key in control: for key in control:
control_output = control[key] control_output = control[key]
applied_to = set()
for i in range(len(control_output)): for i in range(len(control_output)):
x = control_output[i] x = control_output[i]
if x is not None: if x is not None:
if self.global_average_pooling: if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3]) x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
applied_to.add(x)
x *= self.strength x *= self.strength
if x.dtype != output_dtype: if x.dtype != output_dtype:
x = x.to(output_dtype) x = x.to(output_dtype)
@ -120,17 +125,18 @@ class ControlBase:
if o[i].shape[0] < prev_val.shape[0]: if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i] o[i] = prev_val + o[i]
else: else:
o[i] += prev_val o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
return out return out
class ControlNet(ControlBase): class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, device=None, load_device=None, manual_cast_dtype=None): def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, device=None, load_device=None, manual_cast_dtype=None):
super().__init__(device) super().__init__(device)
self.control_model = control_model self.control_model = control_model
self.load_device = load_device self.load_device = load_device
if control_model is not None: if control_model is not None:
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device()) self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.compression_ratio = compression_ratio
self.global_average_pooling = global_average_pooling self.global_average_pooling = global_average_pooling
self.model_sampling_current = None self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype self.manual_cast_dtype = manual_cast_dtype
@ -308,6 +314,37 @@ class ControlLora(ControlNet):
def inference_memory_requirements(self, dtype): def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype) return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def load_controlnet_mmdit(sd):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config = comfy.model_detection.model_config_from_unet(new_sd, "", True)
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
for k in sd:
new_sd[k] = sd[k]
supported_inference_dtypes = model_config.supported_inference_dtypes
controlnet_config = model_config.unet_config
unet_dtype = comfy.model_management.unet_dtype(supported_dtypes=supported_inference_dtypes)
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
if manual_cast_dtype is not None:
operations = comfy.ops.manual_cast
else:
operations = comfy.ops.disable_weight_init
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **controlnet_config)
missing, unexpected = control_model.load_state_dict(new_sd, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
control = ControlNet(control_model, compression_ratio=1, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
def load_controlnet(ckpt_path, model=None): def load_controlnet(ckpt_path, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True) controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if "lora_controlnet" in controlnet_data: if "lora_controlnet" in controlnet_data:
@ -360,6 +397,8 @@ def load_controlnet(ckpt_path, model=None):
if len(leftover_keys) > 0: if len(leftover_keys) > 0:
logging.warning("leftover keys: {}".format(leftover_keys)) logging.warning("leftover keys: {}".format(leftover_keys))
controlnet_data = new_sd controlnet_data = new_sd
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
return load_controlnet_mmdit(controlnet_data)
pth_key = 'control_model.zero_convs.0.0.weight' pth_key = 'control_model.zero_convs.0.0.weight'
pth = False pth = False

View File

@ -745,6 +745,8 @@ class MMDiT(nn.Module):
qkv_bias: bool = True, qkv_bias: bool = True,
context_processor_layers = None, context_processor_layers = None,
context_size = 4096, context_size = 4096,
num_blocks = None,
final_layer = True,
dtype = None, #TODO dtype = None, #TODO
device = None, device = None,
operations = None, operations = None,
@ -766,7 +768,10 @@ class MMDiT(nn.Module):
# apply magic --> this defines a head_size of 64 # apply magic --> this defines a head_size of 64
self.hidden_size = 64 * depth self.hidden_size = 64 * depth
num_heads = depth num_heads = depth
if num_blocks is None:
num_blocks = depth
self.depth = depth
self.num_heads = num_heads self.num_heads = num_heads
self.x_embedder = PatchEmbed( self.x_embedder = PatchEmbed(
@ -821,7 +826,7 @@ class MMDiT(nn.Module):
mlp_ratio=mlp_ratio, mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qkv_bias=qkv_bias,
attn_mode=attn_mode, attn_mode=attn_mode,
pre_only=i == depth - 1, pre_only=(i == num_blocks - 1) and final_layer,
rmsnorm=rmsnorm, rmsnorm=rmsnorm,
scale_mod_only=scale_mod_only, scale_mod_only=scale_mod_only,
swiglu=swiglu, swiglu=swiglu,
@ -830,10 +835,11 @@ class MMDiT(nn.Module):
device=device, device=device,
operations=operations operations=operations
) )
for i in range(depth) for i in range(num_blocks)
] ]
) )
if final_layer:
self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) self.final_layer = FinalLayer(self.hidden_size, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
if compile_core: if compile_core:
@ -893,6 +899,7 @@ class MMDiT(nn.Module):
x: torch.Tensor, x: torch.Tensor,
c_mod: torch.Tensor, c_mod: torch.Tensor,
context: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None,
control = None,
) -> torch.Tensor: ) -> torch.Tensor:
if self.register_length > 0: if self.register_length > 0:
context = torch.cat( context = torch.cat(
@ -905,13 +912,20 @@ class MMDiT(nn.Module):
# context is B, L', D # context is B, L', D
# x is B, L, D # x is B, L, D
for block in self.joint_blocks: blocks = len(self.joint_blocks)
context, x = block( for i in range(blocks):
context, x = self.joint_blocks[i](
context, context,
x, x,
c=c_mod, c=c_mod,
use_checkpoint=self.use_checkpoint, use_checkpoint=self.use_checkpoint,
) )
if control is not None:
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
x += add
x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels) x = self.final_layer(x, c_mod) # (N, T, patch_size ** 2 * out_channels)
return x return x
@ -922,6 +936,7 @@ class MMDiT(nn.Module):
t: torch.Tensor, t: torch.Tensor,
y: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None,
control = None,
) -> torch.Tensor: ) -> torch.Tensor:
""" """
Forward pass of DiT. Forward pass of DiT.
@ -943,7 +958,7 @@ class MMDiT(nn.Module):
if context is not None: if context is not None:
context = self.context_embedder(context) context = self.context_embedder(context)
x = self.forward_core_with_concat(x, c, context) x = self.forward_core_with_concat(x, c, context, control)
x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W) x = self.unpatchify(x, hw=hw) # (N, out_channels, H, W)
return x[:,:,:hw[-2],:hw[-1]] return x[:,:,:hw[-2],:hw[-1]]
@ -956,7 +971,8 @@ class OpenAISignatureMMDITWrapper(MMDiT):
timesteps: torch.Tensor, timesteps: torch.Tensor,
context: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None,
y: Optional[torch.Tensor] = None, y: Optional[torch.Tensor] = None,
control = None,
**kwargs, **kwargs,
) -> torch.Tensor: ) -> torch.Tensor:
return super().forward(x, timesteps, context=context, y=y) return super().forward(x, timesteps, context=context, y=y, control=control)

View File

@ -41,7 +41,9 @@ def detect_unet_config(state_dict, key_prefix):
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1] unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2] patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
unet_config["patch_size"] = patch_size unet_config["patch_size"] = patch_size
unet_config["out_channels"] = state_dict['{}final_layer.linear.weight'.format(key_prefix)].shape[0] // (patch_size * patch_size) final_layer = '{}final_layer.linear.weight'.format(key_prefix)
if final_layer in state_dict:
unet_config["out_channels"] = state_dict[final_layer].shape[0] // (patch_size * patch_size)
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64 unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
unet_config["input_size"] = None unet_config["input_size"] = None
@ -435,10 +437,11 @@ def model_config_from_diffusers_unet(state_dict):
return None return None
def convert_diffusers_mmdit(state_dict, output_prefix=""): def convert_diffusers_mmdit(state_dict, output_prefix=""):
depth = count_blocks(state_dict, 'transformer_blocks.{}.') num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
if depth > 0: if num_blocks > 0:
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
out_sd = {} out_sd = {}
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth}, output_prefix=output_prefix) sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
for k in sd_map: for k in sd_map:
weight = state_dict.get(k, None) weight = state_dict.get(k, None)
if weight is not None: if weight is not None:

View File

@ -298,7 +298,8 @@ def mmdit_to_diffusers(mmdit_config, output_prefix=""):
key_map = {} key_map = {}
depth = mmdit_config.get("depth", 0) depth = mmdit_config.get("depth", 0)
for i in range(depth): num_blocks = mmdit_config.get("num_blocks", depth)
for i in range(num_blocks):
block_from = "transformer_blocks.{}".format(i) block_from = "transformer_blocks.{}".format(i)
block_to = "{}joint_blocks.{}".format(output_prefix, i) block_to = "{}joint_blocks.{}".format(output_prefix, i)