mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-11 02:15:17 +00:00
Remove useless code.
This commit is contained in:
parent
8607c2d42d
commit
fa28d7334b
@ -735,203 +735,3 @@ class Decoder(nn.Module):
|
|||||||
if self.tanh_out:
|
if self.tanh_out:
|
||||||
h = torch.tanh(h)
|
h = torch.tanh(h)
|
||||||
return h
|
return h
|
||||||
|
|
||||||
|
|
||||||
class SimpleDecoder(nn.Module):
|
|
||||||
def __init__(self, in_channels, out_channels, *args, **kwargs):
|
|
||||||
super().__init__()
|
|
||||||
self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
|
|
||||||
ResnetBlock(in_channels=in_channels,
|
|
||||||
out_channels=2 * in_channels,
|
|
||||||
temb_channels=0, dropout=0.0),
|
|
||||||
ResnetBlock(in_channels=2 * in_channels,
|
|
||||||
out_channels=4 * in_channels,
|
|
||||||
temb_channels=0, dropout=0.0),
|
|
||||||
ResnetBlock(in_channels=4 * in_channels,
|
|
||||||
out_channels=2 * in_channels,
|
|
||||||
temb_channels=0, dropout=0.0),
|
|
||||||
nn.Conv2d(2*in_channels, in_channels, 1),
|
|
||||||
Upsample(in_channels, with_conv=True)])
|
|
||||||
# end
|
|
||||||
self.norm_out = Normalize(in_channels)
|
|
||||||
self.conv_out = torch.nn.Conv2d(in_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
for i, layer in enumerate(self.model):
|
|
||||||
if i in [1,2,3]:
|
|
||||||
x = layer(x, None)
|
|
||||||
else:
|
|
||||||
x = layer(x)
|
|
||||||
|
|
||||||
h = self.norm_out(x)
|
|
||||||
h = nonlinearity(h)
|
|
||||||
x = self.conv_out(h)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class UpsampleDecoder(nn.Module):
|
|
||||||
def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
|
|
||||||
ch_mult=(2,2), dropout=0.0):
|
|
||||||
super().__init__()
|
|
||||||
# upsampling
|
|
||||||
self.temb_ch = 0
|
|
||||||
self.num_resolutions = len(ch_mult)
|
|
||||||
self.num_res_blocks = num_res_blocks
|
|
||||||
block_in = in_channels
|
|
||||||
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
||||||
self.res_blocks = nn.ModuleList()
|
|
||||||
self.upsample_blocks = nn.ModuleList()
|
|
||||||
for i_level in range(self.num_resolutions):
|
|
||||||
res_block = []
|
|
||||||
block_out = ch * ch_mult[i_level]
|
|
||||||
for i_block in range(self.num_res_blocks + 1):
|
|
||||||
res_block.append(ResnetBlock(in_channels=block_in,
|
|
||||||
out_channels=block_out,
|
|
||||||
temb_channels=self.temb_ch,
|
|
||||||
dropout=dropout))
|
|
||||||
block_in = block_out
|
|
||||||
self.res_blocks.append(nn.ModuleList(res_block))
|
|
||||||
if i_level != self.num_resolutions - 1:
|
|
||||||
self.upsample_blocks.append(Upsample(block_in, True))
|
|
||||||
curr_res = curr_res * 2
|
|
||||||
|
|
||||||
# end
|
|
||||||
self.norm_out = Normalize(block_in)
|
|
||||||
self.conv_out = torch.nn.Conv2d(block_in,
|
|
||||||
out_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=1)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
# upsampling
|
|
||||||
h = x
|
|
||||||
for k, i_level in enumerate(range(self.num_resolutions)):
|
|
||||||
for i_block in range(self.num_res_blocks + 1):
|
|
||||||
h = self.res_blocks[i_level][i_block](h, None)
|
|
||||||
if i_level != self.num_resolutions - 1:
|
|
||||||
h = self.upsample_blocks[k](h)
|
|
||||||
h = self.norm_out(h)
|
|
||||||
h = nonlinearity(h)
|
|
||||||
h = self.conv_out(h)
|
|
||||||
return h
|
|
||||||
|
|
||||||
|
|
||||||
class LatentRescaler(nn.Module):
|
|
||||||
def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
|
|
||||||
super().__init__()
|
|
||||||
# residual block, interpolate, residual block
|
|
||||||
self.factor = factor
|
|
||||||
self.conv_in = nn.Conv2d(in_channels,
|
|
||||||
mid_channels,
|
|
||||||
kernel_size=3,
|
|
||||||
stride=1,
|
|
||||||
padding=1)
|
|
||||||
self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
|
||||||
out_channels=mid_channels,
|
|
||||||
temb_channels=0,
|
|
||||||
dropout=0.0) for _ in range(depth)])
|
|
||||||
self.attn = AttnBlock(mid_channels)
|
|
||||||
self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
|
|
||||||
out_channels=mid_channels,
|
|
||||||
temb_channels=0,
|
|
||||||
dropout=0.0) for _ in range(depth)])
|
|
||||||
|
|
||||||
self.conv_out = nn.Conv2d(mid_channels,
|
|
||||||
out_channels,
|
|
||||||
kernel_size=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.conv_in(x)
|
|
||||||
for block in self.res_block1:
|
|
||||||
x = block(x, None)
|
|
||||||
x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
|
|
||||||
x = self.attn(x)
|
|
||||||
for block in self.res_block2:
|
|
||||||
x = block(x, None)
|
|
||||||
x = self.conv_out(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class MergedRescaleEncoder(nn.Module):
|
|
||||||
def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
|
|
||||||
attn_resolutions, dropout=0.0, resamp_with_conv=True,
|
|
||||||
ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
|
|
||||||
super().__init__()
|
|
||||||
intermediate_chn = ch * ch_mult[-1]
|
|
||||||
self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
|
|
||||||
z_channels=intermediate_chn, double_z=False, resolution=resolution,
|
|
||||||
attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
|
|
||||||
out_ch=None)
|
|
||||||
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
|
|
||||||
mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.encoder(x)
|
|
||||||
x = self.rescaler(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class MergedRescaleDecoder(nn.Module):
|
|
||||||
def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
|
|
||||||
dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
|
|
||||||
super().__init__()
|
|
||||||
tmp_chn = z_channels*ch_mult[-1]
|
|
||||||
self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
|
|
||||||
resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
|
|
||||||
ch_mult=ch_mult, resolution=resolution, ch=ch)
|
|
||||||
self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
|
|
||||||
out_channels=tmp_chn, depth=rescale_module_depth)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.rescaler(x)
|
|
||||||
x = self.decoder(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Upsampler(nn.Module):
|
|
||||||
def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
|
|
||||||
super().__init__()
|
|
||||||
assert out_size >= in_size
|
|
||||||
num_blocks = int(np.log2(out_size//in_size))+1
|
|
||||||
factor_up = 1.+ (out_size % in_size)
|
|
||||||
print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
|
|
||||||
self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
|
|
||||||
out_channels=in_channels)
|
|
||||||
self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
|
|
||||||
attn_resolutions=[], in_channels=None, ch=in_channels,
|
|
||||||
ch_mult=[ch_mult for _ in range(num_blocks)])
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
x = self.rescaler(x)
|
|
||||||
x = self.decoder(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Resize(nn.Module):
|
|
||||||
def __init__(self, in_channels=None, learned=False, mode="bilinear"):
|
|
||||||
super().__init__()
|
|
||||||
self.with_conv = learned
|
|
||||||
self.mode = mode
|
|
||||||
if self.with_conv:
|
|
||||||
print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
|
|
||||||
raise NotImplementedError()
|
|
||||||
assert in_channels is not None
|
|
||||||
# no asymmetric padding in torch conv, must do it ourselves
|
|
||||||
self.conv = torch.nn.Conv2d(in_channels,
|
|
||||||
in_channels,
|
|
||||||
kernel_size=4,
|
|
||||||
stride=2,
|
|
||||||
padding=1)
|
|
||||||
|
|
||||||
def forward(self, x, scale_factor=1.0):
|
|
||||||
if scale_factor==1.0:
|
|
||||||
return x
|
|
||||||
else:
|
|
||||||
x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
|
|
||||||
return x
|
|
||||||
|
Loading…
Reference in New Issue
Block a user