mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-04-20 11:23:29 +00:00
Refactor.
This commit is contained in:
parent
a74e176a24
commit
fcf513e0b6
@ -515,6 +515,8 @@ class VAE:
|
|||||||
|
|
||||||
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
|
||||||
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
steps = samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x, tile_y, overlap)
|
||||||
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||||
|
steps += samples.shape[0] * utils.get_tiled_scale_steps(samples.shape[3], samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||||
pbar = utils.ProgressBar(steps)
|
pbar = utils.ProgressBar(steps)
|
||||||
|
|
||||||
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
|
decode_fn = lambda a: (self.first_stage_model.decode(1. / self.scale_factor * a.to(self.device)) + 1.0)
|
||||||
@ -566,7 +568,9 @@ class VAE:
|
|||||||
self.first_stage_model = self.first_stage_model.to(self.device)
|
self.first_stage_model = self.first_stage_model.to(self.device)
|
||||||
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
pixel_samples = pixel_samples.movedim(-1,1).to(self.device)
|
||||||
|
|
||||||
steps = utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
steps = pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x, tile_y, overlap)
|
||||||
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x // 2, tile_y * 2, overlap)
|
||||||
|
steps += pixel_samples.shape[0] * utils.get_tiled_scale_steps(pixel_samples.shape[3], pixel_samples.shape[2], tile_x * 2, tile_y // 2, overlap)
|
||||||
pbar = utils.ProgressBar(steps)
|
pbar = utils.ProgressBar(steps)
|
||||||
|
|
||||||
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
samples = utils.tiled_scale(pixel_samples, lambda a: self.first_stage_model.encode(2. * a - 1.).sample() * self.scale_factor, tile_x, tile_y, overlap, upscale_amount = (1/8), out_channels=4, pbar=pbar)
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import math
|
||||||
|
|
||||||
def load_torch_file(ckpt, safe_load=False):
|
def load_torch_file(ckpt, safe_load=False):
|
||||||
if ckpt.lower().endswith(".safetensors"):
|
if ckpt.lower().endswith(".safetensors"):
|
||||||
@ -63,10 +64,7 @@ def common_upscale(samples, width, height, upscale_method, crop):
|
|||||||
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
||||||
|
|
||||||
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
def get_tiled_scale_steps(width, height, tile_x, tile_y, overlap):
|
||||||
it_1 = -(height // -(tile_y * 2 - overlap)) * -(width // -(tile_x // 2 - overlap))
|
return math.ceil((height / (tile_y - overlap))) * math.ceil((width / (tile_x - overlap)))
|
||||||
it_2 = -(height // -(tile_y // 2 - overlap)) * -(width // -(tile_x * 2 - overlap))
|
|
||||||
it_3 = -(height // -(tile_y - overlap)) * -(width // -(tile_x - overlap))
|
|
||||||
return it_1 + it_2 + it_3
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
|
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, pbar = None):
|
||||||
|
@ -40,7 +40,7 @@ class ImageUpscaleWithModel:
|
|||||||
|
|
||||||
tile = 128 + 64
|
tile = 128 + 64
|
||||||
overlap = 8
|
overlap = 8
|
||||||
steps = -(in_img.shape[2] // -(tile - overlap)) * -(in_img.shape[3] // -(tile - overlap))
|
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
|
||||||
pbar = comfy.utils.ProgressBar(steps)
|
pbar = comfy.utils.ProgressBar(steps)
|
||||||
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
|
||||||
upscale_model.cpu()
|
upscale_model.cpu()
|
||||||
|
Loading…
Reference in New Issue
Block a user