This commit is contained in:
comfyanonymous 2023-04-14 00:12:58 -04:00
commit fed4a70b8e
2 changed files with 294 additions and 33 deletions

240
comfy_extras/nodes_mask.py Normal file
View File

@ -0,0 +1,240 @@
import torch
from nodes import MAX_RESOLUTION
class LatentCompositeMasked:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"destination": ("LATENT",),
"source": ("LATENT",),
"x": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 8}),
"y": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 8}),
},
"optional": {
"mask": ("MASK",),
}
}
RETURN_TYPES = ("LATENT",)
FUNCTION = "composite"
CATEGORY = "latent"
def composite(self, destination, source, x, y, mask = None):
output = destination.copy()
destination = destination["samples"].clone()
source = source["samples"]
x = max(-source.shape[3] * 8, min(x, destination.shape[3] * 8))
y = max(-source.shape[2] * 8, min(y, destination.shape[2] * 8))
left, top = (x // 8, y // 8)
right, bottom = (left + source.shape[3], top + source.shape[2],)
if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.clone()
mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear")
mask = mask.repeat((source.shape[0], source.shape[1], 1, 1))
# calculate the bounds of the source that will be overlapping the destination
# this prevents the source trying to overwrite latent pixels that are out of bounds
# of the destination
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
mask = mask[:, :, :visible_height, :visible_width]
inverse_mask = torch.ones_like(mask) - mask
source_portion = mask * source[:, :, :visible_height, :visible_width]
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
output["samples"] = destination
return (output,)
class MaskToImage:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("IMAGE",)
FUNCTION = "convert"
def convert(self, mask):
image = torch.cat([torch.reshape(mask.clone(), [1, mask.shape[0], mask.shape[1], 1,])] * 3, 3)
return (image,)
class SolidMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "solid"
def solid(self, value, width, height):
out = torch.full((height, width), value, dtype=torch.float32, device="cpu")
return (out,)
class InvertMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "invert"
def invert(self, mask):
out = 1.0 - mask
return (out,)
class CropMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "crop"
def crop(self, mask, x, y, width, height):
out = mask[y:y + height, x:x + width]
return (out,)
class MaskComposite:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"destination": ("MASK",),
"source": ("MASK",),
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"operation": (["multiply", "add", "subtract"],),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "combine"
def combine(self, destination, source, x, y, operation):
output = destination.clone()
left, top = (x, y,)
right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0]))
visible_width, visible_height = (right - left, bottom - top,)
source_portion = source[:visible_height, :visible_width]
destination_portion = destination[top:bottom, left:right]
match operation:
case "multiply":
output[top:bottom, left:right] = destination_portion * source_portion
case "add":
output[top:bottom, left:right] = destination_portion + source_portion
case "subtract":
output[top:bottom, left:right] = destination_portion - source_portion
output = torch.clamp(output, 0.0, 1.0)
return (output,)
class FeatherMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
}
}
CATEGORY = "mask"
RETURN_TYPES = ("MASK",)
FUNCTION = "feather"
def feather(self, mask, left, top, right, bottom):
output = mask.clone()
left = min(left, output.shape[1])
right = min(right, output.shape[1])
top = min(top, output.shape[0])
bottom = min(bottom, output.shape[0])
for x in range(left):
feather_rate = (x + 1.0) / left
output[:, x] *= feather_rate
for x in range(right):
feather_rate = (x + 1) / right
output[:, -x] *= feather_rate
for y in range(top):
feather_rate = (y + 1) / top
output[y, :] *= feather_rate
for y in range(bottom):
feather_rate = (y + 1) / bottom
output[-y, :] *= feather_rate
return (output,)
NODE_CLASS_MAPPINGS = {
"LatentCompositeMasked": LatentCompositeMasked,
"MaskToImage": MaskToImage,
"SolidMask": SolidMask,
"InvertMask": InvertMask,
"CropMask": CropMask,
"MaskComposite": MaskComposite,
"FeatherMask": FeatherMask,
}

View File

@ -578,44 +578,64 @@ class LatentFlip:
class LatentComposite: class LatentComposite:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "samples_to": ("LATENT",), return {
"samples_from": ("LATENT",), "required": {
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "samples_to": ("LATENT",),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "samples_from": ("LATENT",),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}} "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
}
}
RETURN_TYPES = ("LATENT",) RETURN_TYPES = ("LATENT",)
FUNCTION = "composite" FUNCTION = "composite"
CATEGORY = "latent" CATEGORY = "latent"
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0): def composite(self, samples_to, samples_from, x, y, feather):
x = x // 8 output = samples_to.copy()
y = y // 8 destination = samples_to["samples"].clone()
feather = feather // 8 source = samples_from["samples"]
samples_out = samples_to.copy()
s = samples_to["samples"].clone()
samples_to = samples_to["samples"]
samples_from = samples_from["samples"]
if feather == 0:
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
else:
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
mask = torch.ones_like(samples_from)
for t in range(feather):
if y != 0:
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
if y + samples_from.shape[2] < samples_to.shape[2]: left, top = (x // 8, y // 8)
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1)) right, bottom = (left + source.shape[3], top + source.shape[2],)
if x != 0: feather = feather // 8
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
if x + samples_from.shape[3] < samples_to.shape[3]:
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
rev_mask = torch.ones_like(mask) - mask # calculate the bounds of the source that will be overlapping the destination
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask # this prevents the source trying to overwrite latent pixels that are out of bounds
samples_out["samples"] = s # of the destination
return (samples_out,) visible_width, visible_height = (destination.shape[3] - left, destination.shape[2] - top,)
mask = torch.ones_like(source)
for f in range(feather):
feather_rate = (f + 1.0) / feather
if left > 0:
mask[:, :, :, f] *= feather_rate
if right < destination.shape[3] - 1:
mask[:, :, :, -f] *= feather_rate
if top > 0:
mask[:, :, f, :] *= feather_rate
if bottom < destination.shape[2] - 1:
mask[:, :, -f, :] *= feather_rate
mask = mask[:, :, :visible_height, :visible_width]
inverse_mask = torch.ones_like(mask) - mask
source_portion = mask * source[:, :, :visible_height, :visible_width]
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
output["samples"] = destination
return (output,)
class LatentCrop: class LatentCrop:
@classmethod @classmethod
@ -932,7 +952,7 @@ class LoadImageMask:
"channel": (["alpha", "red", "green", "blue"], ),} "channel": (["alpha", "red", "green", "blue"], ),}
} }
CATEGORY = "image" CATEGORY = "mask"
RETURN_TYPES = ("MASK",) RETURN_TYPES = ("MASK",)
FUNCTION = "load_image" FUNCTION = "load_image"
@ -1192,3 +1212,4 @@ def init_custom_nodes():
load_custom_nodes() load_custom_nodes()
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py")) load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))