mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Merge branch 'master' of https://github.com/mligaintart/ComfyUI
This commit is contained in:
commit
fed4a70b8e
240
comfy_extras/nodes_mask.py
Normal file
240
comfy_extras/nodes_mask.py
Normal file
@ -0,0 +1,240 @@
|
||||
import torch
|
||||
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
class LatentCompositeMasked:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("LATENT",),
|
||||
"source": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 8}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "composite"
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, destination, source, x, y, mask = None):
|
||||
output = destination.copy()
|
||||
destination = destination["samples"].clone()
|
||||
source = source["samples"]
|
||||
|
||||
x = max(-source.shape[3] * 8, min(x, destination.shape[3] * 8))
|
||||
y = max(-source.shape[2] * 8, min(y, destination.shape[2] * 8))
|
||||
|
||||
left, top = (x // 8, y // 8)
|
||||
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
||||
|
||||
|
||||
if mask is None:
|
||||
mask = torch.ones_like(source)
|
||||
else:
|
||||
mask = mask.clone()
|
||||
mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear")
|
||||
mask = mask.repeat((source.shape[0], source.shape[1], 1, 1))
|
||||
|
||||
# calculate the bounds of the source that will be overlapping the destination
|
||||
# this prevents the source trying to overwrite latent pixels that are out of bounds
|
||||
# of the destination
|
||||
visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),)
|
||||
|
||||
mask = mask[:, :, :visible_height, :visible_width]
|
||||
inverse_mask = torch.ones_like(mask) - mask
|
||||
|
||||
source_portion = mask * source[:, :, :visible_height, :visible_width]
|
||||
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
|
||||
|
||||
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
|
||||
|
||||
output["samples"] = destination
|
||||
|
||||
return (output,)
|
||||
|
||||
class MaskToImage:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
|
||||
FUNCTION = "convert"
|
||||
|
||||
def convert(self, mask):
|
||||
image = torch.cat([torch.reshape(mask.clone(), [1, mask.shape[0], mask.shape[1], 1,])] * 3, 3)
|
||||
|
||||
return (image,)
|
||||
|
||||
class SolidMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "solid"
|
||||
|
||||
def solid(self, value, width, height):
|
||||
out = torch.full((height, width), value, dtype=torch.float32, device="cpu")
|
||||
return (out,)
|
||||
|
||||
class InvertMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "invert"
|
||||
|
||||
def invert(self, mask):
|
||||
out = 1.0 - mask
|
||||
return (out,)
|
||||
|
||||
class CropMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "crop"
|
||||
|
||||
def crop(self, mask, x, y, width, height):
|
||||
out = mask[y:y + height, x:x + width]
|
||||
return (out,)
|
||||
|
||||
class MaskComposite:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("MASK",),
|
||||
"source": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"operation": (["multiply", "add", "subtract"],),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "combine"
|
||||
|
||||
def combine(self, destination, source, x, y, operation):
|
||||
output = destination.clone()
|
||||
|
||||
left, top = (x, y,)
|
||||
right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0]))
|
||||
visible_width, visible_height = (right - left, bottom - top,)
|
||||
|
||||
source_portion = source[:visible_height, :visible_width]
|
||||
destination_portion = destination[top:bottom, left:right]
|
||||
|
||||
match operation:
|
||||
case "multiply":
|
||||
output[top:bottom, left:right] = destination_portion * source_portion
|
||||
case "add":
|
||||
output[top:bottom, left:right] = destination_portion + source_portion
|
||||
case "subtract":
|
||||
output[top:bottom, left:right] = destination_portion - source_portion
|
||||
|
||||
output = torch.clamp(output, 0.0, 1.0)
|
||||
|
||||
return (output,)
|
||||
|
||||
class FeatherMask:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "feather"
|
||||
|
||||
def feather(self, mask, left, top, right, bottom):
|
||||
output = mask.clone()
|
||||
|
||||
left = min(left, output.shape[1])
|
||||
right = min(right, output.shape[1])
|
||||
top = min(top, output.shape[0])
|
||||
bottom = min(bottom, output.shape[0])
|
||||
|
||||
for x in range(left):
|
||||
feather_rate = (x + 1.0) / left
|
||||
output[:, x] *= feather_rate
|
||||
|
||||
for x in range(right):
|
||||
feather_rate = (x + 1) / right
|
||||
output[:, -x] *= feather_rate
|
||||
|
||||
for y in range(top):
|
||||
feather_rate = (y + 1) / top
|
||||
output[y, :] *= feather_rate
|
||||
|
||||
for y in range(bottom):
|
||||
feather_rate = (y + 1) / bottom
|
||||
output[-y, :] *= feather_rate
|
||||
|
||||
return (output,)
|
||||
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
"MaskToImage": MaskToImage,
|
||||
"SolidMask": SolidMask,
|
||||
"InvertMask": InvertMask,
|
||||
"CropMask": CropMask,
|
||||
"MaskComposite": MaskComposite,
|
||||
"FeatherMask": FeatherMask,
|
||||
}
|
||||
|
79
nodes.py
79
nodes.py
@ -578,44 +578,64 @@ class LatentFlip:
|
||||
class LatentComposite:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "samples_to": ("LATENT",),
|
||||
return {
|
||||
"required": {
|
||||
"samples_to": ("LATENT",),
|
||||
"samples_from": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
}}
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "composite"
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
|
||||
x = x // 8
|
||||
y = y // 8
|
||||
feather = feather // 8
|
||||
samples_out = samples_to.copy()
|
||||
s = samples_to["samples"].clone()
|
||||
samples_to = samples_to["samples"]
|
||||
samples_from = samples_from["samples"]
|
||||
if feather == 0:
|
||||
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
||||
else:
|
||||
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
||||
mask = torch.ones_like(samples_from)
|
||||
for t in range(feather):
|
||||
if y != 0:
|
||||
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
||||
def composite(self, samples_to, samples_from, x, y, feather):
|
||||
output = samples_to.copy()
|
||||
destination = samples_to["samples"].clone()
|
||||
source = samples_from["samples"]
|
||||
|
||||
if y + samples_from.shape[2] < samples_to.shape[2]:
|
||||
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
||||
if x != 0:
|
||||
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
||||
if x + samples_from.shape[3] < samples_to.shape[3]:
|
||||
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
||||
rev_mask = torch.ones_like(mask) - mask
|
||||
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
||||
samples_out["samples"] = s
|
||||
return (samples_out,)
|
||||
left, top = (x // 8, y // 8)
|
||||
right, bottom = (left + source.shape[3], top + source.shape[2],)
|
||||
feather = feather // 8
|
||||
|
||||
|
||||
|
||||
# calculate the bounds of the source that will be overlapping the destination
|
||||
# this prevents the source trying to overwrite latent pixels that are out of bounds
|
||||
# of the destination
|
||||
visible_width, visible_height = (destination.shape[3] - left, destination.shape[2] - top,)
|
||||
|
||||
mask = torch.ones_like(source)
|
||||
|
||||
for f in range(feather):
|
||||
feather_rate = (f + 1.0) / feather
|
||||
|
||||
if left > 0:
|
||||
mask[:, :, :, f] *= feather_rate
|
||||
|
||||
if right < destination.shape[3] - 1:
|
||||
mask[:, :, :, -f] *= feather_rate
|
||||
|
||||
if top > 0:
|
||||
mask[:, :, f, :] *= feather_rate
|
||||
|
||||
if bottom < destination.shape[2] - 1:
|
||||
mask[:, :, -f, :] *= feather_rate
|
||||
|
||||
mask = mask[:, :, :visible_height, :visible_width]
|
||||
inverse_mask = torch.ones_like(mask) - mask
|
||||
|
||||
source_portion = mask * source[:, :, :visible_height, :visible_width]
|
||||
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
|
||||
|
||||
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
|
||||
|
||||
output["samples"] = destination
|
||||
|
||||
return (output,)
|
||||
|
||||
class LatentCrop:
|
||||
@classmethod
|
||||
@ -932,7 +952,7 @@ class LoadImageMask:
|
||||
"channel": (["alpha", "red", "green", "blue"], ),}
|
||||
}
|
||||
|
||||
CATEGORY = "image"
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "load_image"
|
||||
@ -1192,3 +1212,4 @@ def init_custom_nodes():
|
||||
load_custom_nodes()
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
|
||||
load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
|
||||
|
Loading…
Reference in New Issue
Block a user