Compare commits

...

3 Commits

Author SHA1 Message Date
Pam
f6c36315bb
Merge fa87f263ce into 2307ff6746 2025-01-08 17:06:08 -07:00
comfyanonymous
2307ff6746 Improve some logging messages. 2025-01-08 19:05:22 -05:00
Pam
fa87f263ce Fix nondeterministic results when add_noise==disable 2024-08-21 09:41:42 +05:00
5 changed files with 11 additions and 10 deletions

View File

@ -5,12 +5,15 @@ import comfy.utils
import numpy as np
import logging
def prepare_noise(latent_image, seed, noise_inds=None):
def prepare_noise(latent_image, seed, noise_inds=None, disable_noise=False):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
if disable_noise:
return torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")

View File

@ -111,7 +111,7 @@ class CLIP:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
self.use_clip_schedule = False
logging.info("CLIP model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
def clone(self):
n = CLIP(no_init=True)
@ -898,7 +898,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded straight to GPU")
logging.info("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True)
return (model_patcher, clip, vae, clipvision)

View File

@ -418,7 +418,7 @@ class Noise_EmptyNoise:
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
return comfy.sample.prepare_noise(latent_image, self.seed, disable_noise=True)
class Noise_RandomNoise:

View File

@ -1485,11 +1485,8 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds, disable_noise)
noise_mask = None
if "noise_mask" in latent:

View File

@ -4,7 +4,8 @@ lint.ignore = ["ALL"]
# Enable specific rules
lint.select = [
"S307", # suspicious-eval-usage
"T201", # print-usage
"S102", # exec
"T", # print-usage
"W",
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f