Compare commits

..

35 Commits

Author SHA1 Message Date
Zoltán Dócs
a3d958c85b
Merge e0c5a8778a into 2ff3104f70 2025-01-10 14:29:02 +00:00
comfyanonymous
2ff3104f70 WIP support for Nvidia Cosmos 7B and 14B text to world (video) models. 2025-01-10 09:14:16 -05:00
comfyanonymous
129d8908f7 Add argument to skip the output reshaping in the attention functions. 2025-01-10 06:27:37 -05:00
comfyanonymous
ff838657fa Cleaner handling of attention mask in ltxv model code. 2025-01-09 07:12:03 -05:00
comfyanonymous
2307ff6746 Improve some logging messages. 2025-01-08 19:05:22 -05:00
comfyanonymous
d0f3752e33 Properly calculate inner dim for t5 model.
This is required to support some different types of t5 models.
2025-01-07 17:33:03 -05:00
Dr.Lt.Data
c515bdf371
fixed: robust loading comfy.settings.json (#6383)
https://github.com/comfyanonymous/ComfyUI/issues/6371
2025-01-07 16:03:56 -05:00
comfyanonymous
4209edf48d Make a few more samplers deterministic. 2025-01-07 02:12:32 -05:00
Chenlei Hu
d055325783
Document get_attr and get_model_object (#6357)
* Document get_attr and get_model_object

* Update model_patcher.py

* Update model_patcher.py

* Update model_patcher.py
2025-01-06 20:12:22 -05:00
Chenlei Hu
eeab420c70
Update frontend to v1.6.18 (#6368) 2025-01-06 18:42:45 -05:00
comfyanonymous
916d1e14a9 Make ancestral samplers more deterministic. 2025-01-06 03:04:32 -05:00
Jedrzej Kosinski
c496e53519
In inner_sample, change "sigmas" to "sampler_sigmas" in transformer_options to not conflict with the "sigmas" that will overwrite "sigmas" in _calc_cond_batch (#6360) 2025-01-06 01:36:47 -05:00
Yoland Yan
7da85fac3f
Update CODEOWNERS (#6338)
Adding yoland and robin to web dir
2025-01-05 04:33:49 -05:00
Chenlei Hu
b65b83af6f
Add update-frontend github action (#6336)
* Add update-frontend github action

* Update secrets

* nit
2025-01-05 04:32:11 -05:00
comfyanonymous
c8a3492c22 Make the device an optional parameter in the clip loaders. 2025-01-05 04:29:36 -05:00
comfyanonymous
5cbf79787f Add advanced device option to clip loader nodes.
Right click the "Load CLIP" or DualCLIPLoader node and "Show Advanced".
2025-01-05 01:46:11 -05:00
comfyanonymous
d45ebb63f6 Remove old unused function. 2025-01-04 07:20:54 -05:00
Chenlei Hu
caa6476a69
Update web content to release v1.6.17 (#6337)
* Update web content to release v1.6.17

* Remove js maps
2025-01-03 16:22:08 -05:00
Chenlei Hu
45671cda0b
Update web content to release v1.6.16 (#6335)
* Update web content to release v1.6.16
2025-01-03 13:56:46 -05:00
comfyanonymous
8f29664057 Change defaults in nightly package workflow. 2025-01-03 12:12:17 -05:00
Chenlei Hu
0b9839ef43
Update web content to release v1.6.15 (#6324) 2025-01-02 19:20:48 -05:00
Terry Jia
953693b137
add fov and mask for load 3d node (#6308)
* add fov and mask for load 3d node

* some comments
2025-01-02 19:20:34 -05:00
Chenlei Hu
a39ea87bca
Update web content to release v1.6.14 (#6312) 2025-01-02 16:18:54 -05:00
comfyanonymous
9e9c8a1c64 Clear cache as often on AMD as Nvidia.
I think the issue this was working around has been solved.

If you notice that this change slows things down or causes stutters on
your AMD GPU with ROCm on Linux please report it.
2025-01-02 08:44:16 -05:00
Andrew Kvochko
0f11d60afb
Fix temporal tiling for decoder, remove redundant tiles. (#6306)
This commit fixes the temporal tile size calculation, and removes
a redundant tile at the end of the range when its elements are
completely covered by the previous tile.

Co-authored-by: Andrew Kvochko <a.kvochko@lightricks.com>
2025-01-01 16:29:01 -05:00
comfyanonymous
79eea51a1d Fix and enforce all ruff W rules. 2025-01-01 03:08:33 -05:00
blepping
c0338a46a4
Fix unknown sampler error handling in calculate_sigmas function (#6280)
Modernize calculate_sigmas function
2024-12-31 17:33:50 -05:00
Jedrzej Kosinski
1c99734e5a
Add missing model_options param (#6296) 2024-12-31 14:46:55 -05:00
filtered
67758f50f3
Fix custom node type-hinting examples (#6281)
* Fix import in comfy_types doc / sample

* Clarify docstring
2024-12-31 03:41:09 -05:00
Alexander Piskun
02eef72bf5
fixed "verbose" argument (#6289)
Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-31 03:27:09 -05:00
comfyanonymous
b7572b2f87 Fix and enforce no trailing whitespace. 2024-12-31 03:16:37 -05:00
blepping
a90aafafc1
Add kl_optimal scheduler (#6206)
* Add kl_optimal scheduler

* Rename kl_optimal_schedule to kl_optimal_scheduler to be more consistent
2024-12-30 05:09:38 -05:00
comfyanonymous
d9b7cfac7e Fix and enforce new lines at the end of files. 2024-12-30 04:14:59 -05:00
Jedrzej Kosinski
3507870535
Add 'sigmas' to transformer_options so that downstream code can know about the full scope of current sampling run, fix Hook Keyframes' guarantee_steps=1 inconsistent behavior with sampling split across different Sampling nodes/sampling runs by referencing 'sigmas' (#6273) 2024-12-30 03:42:49 -05:00
catboxanon
82ecb02c1e
Remove duplicate calls to INPUT_TYPES (#6249) 2024-12-29 20:06:49 -05:00
117 changed files with 202917 additions and 158073 deletions

58
.github/workflows/update-frontend.yml vendored Normal file
View File

@ -0,0 +1,58 @@
name: Update Frontend Release
on:
workflow_dispatch:
inputs:
version:
description: "Frontend version to update to (e.g., 1.0.0)"
required: true
type: string
jobs:
update-frontend:
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- name: Checkout ComfyUI
uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install wait-for-it
# Frontend asset will be downloaded to ComfyUI/web_custom_versions/Comfy-Org_ComfyUI_frontend/{version}
- name: Start ComfyUI server
run: |
python main.py --cpu --front-end-version Comfy-Org/ComfyUI_frontend@${{ github.event.inputs.version }} 2>&1 | tee console_output.log &
wait-for-it --service 127.0.0.1:8188 -t 30
- name: Configure Git
run: |
git config --global user.name "GitHub Action"
git config --global user.email "action@github.com"
# Replace existing frontend content with the new version and remove .js.map files
# See https://github.com/Comfy-Org/ComfyUI_frontend/issues/2145 for why we remove .js.map files
- name: Update frontend content
run: |
rm -rf web/
cp -r web_custom_versions/Comfy-Org_ComfyUI_frontend/${{ github.event.inputs.version }} web/
rm web/**/*.js.map
- name: Create Pull Request
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.PR_BOT_PAT }}
commit-message: "Update frontend to v${{ github.event.inputs.version }}"
title: "Frontend Update: v${{ github.event.inputs.version }}"
body: |
Automated PR to update frontend content to version ${{ github.event.inputs.version }}
This PR was created automatically by the frontend update workflow.
branch: release-${{ github.event.inputs.version }}
base: master
labels: Frontend,dependencies

View File

@ -7,19 +7,19 @@ on:
description: 'cuda version' description: 'cuda version'
required: true required: true
type: string type: string
default: "124" default: "126"
python_minor: python_minor:
description: 'python minor version' description: 'python minor version'
required: true required: true
type: string type: string
default: "12" default: "13"
python_patch: python_patch:
description: 'python patch version' description: 'python patch version'
required: true required: true
type: string type: string
default: "4" default: "1"
# push: # push:
# branches: # branches:
# - master # - master

View File

@ -17,7 +17,7 @@
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata /app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
# Frontend assets # Frontend assets
/web/ @huchenlei @webfiltered @pythongosssss /web/ @huchenlei @webfiltered @pythongosssss @yoland68 @robinjhuang
# Extra nodes # Extra nodes
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink /comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink

View File

@ -10,4 +10,4 @@ class FileService:
if directory_key not in self.allowed_directories: if directory_key not in self.allowed_directories:
raise ValueError("Invalid directory key") raise ValueError("Invalid directory key")
directory_path: str = self.allowed_directories[directory_key] directory_path: str = self.allowed_directories[directory_key]
return self.file_system_ops.walk_directory(directory_path) return self.file_system_ops.walk_directory(directory_path)

View File

@ -28,7 +28,7 @@ class TerminalService:
if columns != self.cols: if columns != self.cols:
self.cols = columns self.cols = columns
changed = True changed = True
if lines != self.rows: if lines != self.rows:
self.rows = lines self.rows = lines

View File

@ -39,4 +39,4 @@ class FileSystemOperations:
"path": relative_path, "path": relative_path,
"type": "directory" "type": "directory"
}) })
return file_list return file_list

View File

@ -1,6 +1,7 @@
import os import os
import json import json
from aiohttp import web from aiohttp import web
import logging
class AppSettings(): class AppSettings():
@ -11,8 +12,12 @@ class AppSettings():
file = self.user_manager.get_request_user_filepath( file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json") request, "comfy.settings.json")
if os.path.isfile(file): if os.path.isfile(file):
with open(file) as f: try:
return json.load(f) with open(file) as f:
return json.load(f)
except:
logging.error(f"The user settings file is corrupted: {file}")
return {}
else: else:
return {} return {}
@ -51,4 +56,4 @@ class AppSettings():
settings = self.get_settings(request) settings = self.get_settings(request)
settings[setting_id] = await request.json() settings[setting_id] = await request.json()
self.save_settings(request, settings) self.save_settings(request, settings)
return web.Response(status=200) return web.Response(status=200)

View File

@ -10,7 +10,7 @@ class CustomNodeManager:
Placeholder to refactor the custom node management features from ComfyUI-Manager. Placeholder to refactor the custom node management features from ComfyUI-Manager.
Currently it only contains the custom workflow templates feature. Currently it only contains the custom workflow templates feature.
""" """
def add_routes(self, routes, webapp, loadedModules): def add_routes(self, routes, webapp, loadedModules):
@routes.get("/workflow_templates") @routes.get("/workflow_templates")
async def get_workflow_templates(request): async def get_workflow_templates(request):

View File

@ -5,7 +5,7 @@ This module provides type hinting and concrete convenience types for node develo
If cloned to the custom_nodes directory of ComfyUI, types can be imported using: If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
```python ```python
from comfy_types import IO, ComfyNodeABC, CheckLazyMixin from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
class ExampleNode(ComfyNodeABC): class ExampleNode(ComfyNodeABC):
@classmethod @classmethod

View File

@ -1,12 +1,12 @@
from comfy_types import IO, ComfyNodeABC, InputTypeDict from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc from inspect import cleandoc
class ExampleNode(ComfyNodeABC): class ExampleNode(ComfyNodeABC):
"""An example node that just adds 1 to an input integer. """An example node that just adds 1 to an input integer.
* Requires an IDE configured with analysis paths etc to be worth looking at. * Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
* Not intended for use in ComfyUI. * This node is intended as an example for developers only.
""" """
DESCRIPTION = cleandoc(__doc__) DESCRIPTION = cleandoc(__doc__)

View File

@ -226,7 +226,7 @@ def model_wrapper(
The input `model` has the following format: The input `model` has the following format:
`` ``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score model(x, t_input, **model_kwargs) -> noise | x_start | v | score
`` ``
The input `classifier_fn` has the following format: The input `classifier_fn` has the following format:
`` ``
@ -240,7 +240,7 @@ def model_wrapper(
The input `model` has the following format: The input `model` has the following format:
`` ``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
`` ``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output. And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
@ -254,7 +254,7 @@ def model_wrapper(
`` ``
def model_fn(x, t_continuous) -> noise: def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous) t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs) return noise_pred(model, x, t_input, **model_kwargs)
`` ``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
@ -359,7 +359,7 @@ class UniPC:
max_val=1., max_val=1.,
variant='bh1', variant='bh1',
): ):
"""Construct a UniPC. """Construct a UniPC.
We support both data_prediction and noise_prediction. We support both data_prediction and noise_prediction.
""" """
@ -372,7 +372,7 @@ class UniPC:
def dynamic_thresholding_fn(self, x0, t=None): def dynamic_thresholding_fn(self, x0, t=None):
""" """
The dynamic thresholding method. The dynamic thresholding method.
""" """
dims = x0.dim() dims = x0.dim()
p = self.dynamic_thresholding_ratio p = self.dynamic_thresholding_ratio
@ -404,7 +404,7 @@ class UniPC:
def model_fn(self, x, t): def model_fn(self, x, t):
""" """
Convert the model to the noise prediction model or the data prediction model. Convert the model to the noise prediction model or the data prediction model.
""" """
if self.predict_x0: if self.predict_x0:
return self.data_prediction_fn(x, t) return self.data_prediction_fn(x, t)
@ -461,7 +461,7 @@ class UniPC:
def denoise_to_zero_fn(self, x, s): def denoise_to_zero_fn(self, x, s):
""" """
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization. Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
""" """
return self.data_prediction_fn(x, s) return self.data_prediction_fn(x, s)
@ -510,7 +510,7 @@ class UniPC:
col = torch.ones_like(rks) col = torch.ones_like(rks)
for k in range(1, K + 1): for k in range(1, K + 1):
C.append(col) C.append(col)
col = col * rks / (k + 1) col = col * rks / (k + 1)
C = torch.stack(C, dim=1) C = torch.stack(C, dim=1)
if len(D1s) > 0: if len(D1s) > 0:
@ -626,7 +626,7 @@ class UniPC:
R.append(torch.pow(rks, i - 1)) R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h) b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1) factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R) R = torch.stack(R)
b = torch.tensor(b, device=x.device) b = torch.tensor(b, device=x.device)

View File

@ -366,9 +366,15 @@ class HookKeyframe:
self.start_t = 999999999.9 self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps self.guarantee_steps = guarantee_steps
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
if self.start_t > max_sigma:
return 0
return self.guarantee_steps
def clone(self): def clone(self):
c = HookKeyframe(strength=self.strength, c = HookKeyframe(strength=self.strength,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps) start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
c.start_t = self.start_t c.start_t = self.start_t
return c return c
@ -408,6 +414,12 @@ class HookKeyframeGroup:
else: else:
self._current_keyframe = None self._current_keyframe = None
def has_guarantee_steps(self):
for kf in self.keyframes:
if kf.guarantee_steps > 0:
return True
return False
def has_index(self, index: int): def has_index(self, index: int):
return index >= 0 and index < len(self.keyframes) return index >= 0 and index < len(self.keyframes)
@ -425,15 +437,16 @@ class HookKeyframeGroup:
for keyframe in self.keyframes: for keyframe in self.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent) keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, curr_t: float) -> bool: def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
if self.is_empty(): if self.is_empty():
return False return False
if curr_t == self._curr_t: if curr_t == self._curr_t:
return False return False
max_sigma = torch.max(transformer_options["sample_sigmas"])
prev_index = self._current_index prev_index = self._current_index
prev_strength = self._current_strength prev_strength = self._current_strength
# if met guaranteed steps, look for next keyframe in case need to switch # if met guaranteed steps, look for next keyframe in case need to switch
if self._current_used_steps >= self._current_keyframe.guarantee_steps: if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
# if has next index, loop through and see if need to switch # if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1): if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.keyframes)): for i in range(self._current_index+1, len(self.keyframes)):
@ -446,7 +459,7 @@ class HookKeyframeGroup:
self._current_keyframe = eval_c self._current_keyframe = eval_c
self._current_used_steps = 0 self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes # if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_keyframe.guarantee_steps > 0: if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break break
# if eval_c is outside the percent range, stop looking further # if eval_c is outside the percent range, stop looking further
else: break else: break

View File

@ -70,8 +70,14 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
return sigma_down, sigma_up return sigma_down, sigma_up
def default_noise_sampler(x): def default_noise_sampler(x, seed=None):
return lambda sigma, sigma_next: torch.randn_like(x) if seed is not None:
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
else:
generator = None
return lambda sigma, sigma_next: torch.randn(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator)
class BatchedBrownianTree: class BatchedBrownianTree:
@ -168,7 +174,8 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler) return sample_euler_ancestral_RF(model, x, sigmas, extra_args, callback, disable, eta, s_noise, noise_sampler)
"""Ancestral sampling with Euler method steps.""" """Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -189,7 +196,8 @@ def sample_euler_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None): def sample_euler_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1.0, s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps.""" """Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -290,7 +298,8 @@ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
"""Ancestral sampling with DPM-Solver second-order steps.""" """Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -318,7 +327,8 @@ def sample_dpm_2_ancestral(model, x, sigmas, extra_args=None, callback=None, dis
def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_dpm_2_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver second-order steps.""" """Ancestral sampling with DPM-Solver second-order steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -465,7 +475,7 @@ class DPMSolver(nn.Module):
return x_3, eps_cache return x_3, eps_cache
def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None): def dpm_solver_fast(self, x, t_start, t_end, nfe, eta=0., s_noise=1., noise_sampler=None):
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
if not t_end > t_start and eta: if not t_end > t_start and eta:
raise ValueError('eta must be 0 for reverse sampling') raise ValueError('eta must be 0 for reverse sampling')
@ -504,7 +514,7 @@ class DPMSolver(nn.Module):
return x return x
def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None): def dpm_solver_adaptive(self, x, t_start, t_end, order=3, rtol=0.05, atol=0.0078, h_init=0.05, pcoeff=0., icoeff=1., dcoeff=0., accept_safety=0.81, eta=0., s_noise=1., noise_sampler=None):
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler noise_sampler = default_noise_sampler(x, seed=self.extra_args.get("seed", None)) if noise_sampler is None else noise_sampler
if order not in {2, 3}: if order not in {2, 3}:
raise ValueError('order should be 2 or 3') raise ValueError('order should be 2 or 3')
forward = t_end > t_start forward = t_end > t_start
@ -591,7 +601,8 @@ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None,
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp() sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg() t_fn = lambda sigma: sigma.log().neg()
@ -625,7 +636,8 @@ def sample_dpmpp_2s_ancestral(model, x, sigmas, extra_args=None, callback=None,
def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1 sigma_fn = lambda lbda: (lbda.exp() + 1) ** -1
lambda_fn = lambda sigma: ((1-sigma)/sigma).log() lambda_fn = lambda sigma: ((1-sigma)/sigma).log()
@ -882,7 +894,8 @@ def DDPMSampler_step(x, sigma, sigma_prev, noise, noise_sampler):
def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None): def generic_step_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None, step_function=None):
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
@ -902,7 +915,8 @@ def sample_ddpm(model, x, sigmas, extra_args=None, callback=None, disable=None,
@torch.no_grad() @torch.no_grad()
def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None): def sample_lcm(model, x, sigmas, extra_args=None, callback=None, disable=None, noise_sampler=None):
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]]) s_in = x.new_ones([x.shape[0]])
for i in trange(len(sigmas) - 1, disable=disable): for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args) denoised = model(x, sigmas[i] * s_in, **extra_args)
@ -1153,7 +1167,8 @@ def sample_euler_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disabl
def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with Euler method steps.""" """Ancestral sampling with Euler method steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
temp = [0] temp = [0]
def post_cfg_function(args): def post_cfg_function(args):
@ -1179,7 +1194,8 @@ def sample_euler_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=No
def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None): def sample_dpmpp_2s_ancestral_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""Ancestral sampling with DPM-Solver++(2S) second-order steps.""" """Ancestral sampling with DPM-Solver++(2S) second-order steps."""
extra_args = {} if extra_args is None else extra_args extra_args = {} if extra_args is None else extra_args
noise_sampler = default_noise_sampler(x) if noise_sampler is None else noise_sampler seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
temp = [0] temp = [0]
def post_cfg_function(args): def post_cfg_function(args):

View File

@ -382,3 +382,7 @@ class HunyuanVideo(LatentFormat):
] ]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761] latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
latent_dimensions = 3

View File

@ -138,7 +138,7 @@ class StageB(nn.Module):
# nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings # nn.init.normal_(self.pixels_mapper[2].weight, std=0.02) # conditionings
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
# nn.init.constant_(self.clf[1].weight, 0) # outputs # nn.init.constant_(self.clf[1].weight, 0) # outputs
# #
# # blocks # # blocks
# for level_block in self.down_blocks + self.up_blocks: # for level_block in self.down_blocks + self.up_blocks:
# for block in level_block: # for block in level_block:
@ -148,7 +148,7 @@ class StageB(nn.Module):
# for layer in block.modules(): # for layer in block.modules():
# if isinstance(layer, nn.Linear): # if isinstance(layer, nn.Linear):
# nn.init.constant_(layer.weight, 0) # nn.init.constant_(layer.weight, 0)
# #
# def _init_weights(self, m): # def _init_weights(self, m):
# if isinstance(m, (nn.Conv2d, nn.Linear)): # if isinstance(m, (nn.Conv2d, nn.Linear)):
# torch.nn.init.xavier_uniform_(m.weight) # torch.nn.init.xavier_uniform_(m.weight)

View File

@ -142,7 +142,7 @@ class StageC(nn.Module):
# nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings # nn.init.normal_(self.clip_img_mapper.weight, std=0.02) # conditionings
# torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs # torch.nn.init.xavier_uniform_(self.embedding[1].weight, 0.02) # inputs
# nn.init.constant_(self.clf[1].weight, 0) # outputs # nn.init.constant_(self.clf[1].weight, 0) # outputs
# #
# # blocks # # blocks
# for level_block in self.down_blocks + self.up_blocks: # for level_block in self.down_blocks + self.up_blocks:
# for block in level_block: # for block in level_block:
@ -152,7 +152,7 @@ class StageC(nn.Module):
# for layer in block.modules(): # for layer in block.modules():
# if isinstance(layer, nn.Linear): # if isinstance(layer, nn.Linear):
# nn.init.constant_(layer.weight, 0) # nn.init.constant_(layer.weight, 0)
# #
# def _init_weights(self, m): # def _init_weights(self, m):
# if isinstance(m, (nn.Conv2d, nn.Linear)): # if isinstance(m, (nn.Conv2d, nn.Linear)):
# torch.nn.init.xavier_uniform_(m.weight) # torch.nn.init.xavier_uniform_(m.weight)

804
comfy/ldm/cosmos/blocks.py Normal file
View File

@ -0,0 +1,804 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional
import logging
import numpy as np
import torch
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import nn
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
def get_normalization(name: str, channels: int, weight_args={}):
if name == "I":
return nn.Identity()
elif name == "R":
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
else:
raise ValueError(f"Normalization {name} not found")
class BaseAttentionOp(nn.Module):
def __init__(self):
super().__init__()
class Attention(nn.Module):
"""
Generalized attention impl.
Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.
If `context_dim` is None, self-attention is assumed.
Parameters:
query_dim (int): Dimension of each query vector.
context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.
heads (int, optional): Number of attention heads. Defaults to 8.
dim_head (int, optional): Dimension of each head. Defaults to 64.
dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.
attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.
qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.
out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.
qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.
Defaults to "SSI".
qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.
Defaults to 'per_head'. Only support 'per_head'.
Examples:
>>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)
>>> query = torch.randn(10, 128) # Batch size of 10
>>> context = torch.randn(10, 256) # Batch size of 10
>>> output = attn(query, context) # Perform the attention operation
Note:
https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
"""
def __init__(
self,
query_dim: int,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
attn_op: Optional[BaseAttentionOp] = None,
qkv_bias: bool = False,
out_bias: bool = False,
qkv_norm: str = "SSI",
qkv_norm_mode: str = "per_head",
backend: str = "transformer_engine",
qkv_format: str = "bshd",
weight_args={},
operations=None,
) -> None:
super().__init__()
self.is_selfattn = context_dim is None # self attention
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
self.heads = heads
self.dim_head = dim_head
self.qkv_norm_mode = qkv_norm_mode
self.qkv_format = qkv_format
if self.qkv_norm_mode == "per_head":
norm_dim = dim_head
else:
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
self.backend = backend
self.to_q = nn.Sequential(
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[0], norm_dim),
)
self.to_k = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[1], norm_dim),
)
self.to_v = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[2], norm_dim),
)
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args),
nn.Dropout(dropout),
)
def cal_qkv(
self, x, context=None, mask=None, rope_emb=None, **kwargs
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
del kwargs
"""
self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.
Before 07/24/2024, these modules normalize across all heads.
After 07/24/2024, to support tensor parallelism and follow the common practice in the community,
we support to normalize per head.
To keep the checkpoint copatibility with the previous code,
we keep the nn.Sequential but call the projection and the normalization layers separately.
We use a flag `self.qkv_norm_mode` to control the normalization behavior.
The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.
"""
if self.qkv_norm_mode == "per_head":
q = self.to_q[0](x)
context = x if context is None else context
k = self.to_k[0](context)
v = self.to_v[0](context)
q, k, v = map(
lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head),
(q, k, v),
)
else:
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
q = self.to_q[1](q)
k = self.to_k[1](k)
v = self.to_v[1](v)
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
q = apply_rotary_pos_emb(q, rope_emb)
k = apply_rotary_pos_emb(k, rope_emb)
return q, k, v
def cal_attn(self, q, k, v, mask=None):
out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True)
out = rearrange(out, " b n s c -> s b (n c)")
return self.to_out(out)
def forward(
self,
x,
context=None,
mask=None,
rope_emb=None,
**kwargs,
):
"""
Args:
x (Tensor): The query tensor of shape [B, Mq, K]
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
return self.cal_attn(q, k, v, mask)
class FeedForward(nn.Module):
"""
Transformer FFN with optional gating
Parameters:
d_model (int): Dimensionality of input features.
d_ff (int): Dimensionality of the hidden layer.
dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.
activation (callable, optional): The activation function applied after the first linear layer.
Defaults to nn.ReLU().
is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.
Defaults to False.
bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.
Example:
>>> ff = FeedForward(d_model=512, d_ff=2048)
>>> x = torch.randn(64, 10, 512) # Example input tensor
>>> output = ff(x)
>>> print(output.shape) # Expected shape: (64, 10, 512)
"""
def __init__(
self,
d_model: int,
d_ff: int,
dropout: float = 0.1,
activation=nn.ReLU(),
is_gated: bool = False,
bias: bool = False,
weight_args={},
operations=None,
) -> None:
super().__init__()
self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args)
self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args)
self.dropout = nn.Dropout(dropout)
self.activation = activation
self.is_gated = is_gated
if is_gated:
self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args)
def forward(self, x: torch.Tensor):
g = self.activation(self.layer1(x))
if self.is_gated:
x = g * self.linear_gate(x)
else:
x = g
assert self.dropout.p == 0.0, "we skip dropout"
return self.layer2(x)
class GPT2FeedForward(FeedForward):
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None):
super().__init__(
d_model=d_model,
d_ff=d_ff,
dropout=dropout,
activation=nn.GELU(),
is_gated=False,
bias=bias,
weight_args=weight_args,
operations=operations,
)
def forward(self, x: torch.Tensor):
assert self.dropout.p == 0.0, "we skip dropout"
x = self.layer1(x)
x = self.activation(x)
x = self.layer2(x)
return x
def modulate(x, shift, scale):
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
class Timesteps(nn.Module):
def __init__(self, num_channels):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps):
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return emb
class TimestepEmbedding(nn.Module):
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None):
super().__init__()
logging.debug(
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
)
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args)
self.activation = nn.SiLU()
self.use_adaln_lora = use_adaln_lora
if use_adaln_lora:
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args)
else:
self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args)
def forward(self, sample: torch.Tensor) -> torch.Tensor:
emb = self.linear_1(sample)
emb = self.activation(emb)
emb = self.linear_2(emb)
if self.use_adaln_lora:
adaln_lora_B_3D = emb
emb_B_D = sample
else:
emb_B_D = emb
adaln_lora_B_3D = None
return emb_B_D, adaln_lora_B_3D
class FourierFeatures(nn.Module):
"""
Implements a layer that generates Fourier features from input tensors, based on randomly sampled
frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems.
[B] -> [B, D]
Parameters:
num_channels (int): The number of Fourier features to generate.
bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1.
normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize
the variance of the features. Defaults to False.
Example:
>>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True)
>>> x = torch.randn(10, 256) # Example input tensor
>>> output = layer(x)
>>> print(output.shape) # Expected shape: (10, 256)
"""
def __init__(self, num_channels, bandwidth=1, normalize=False):
super().__init__()
self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True)
self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True)
self.gain = np.sqrt(2) if normalize else 1
def forward(self, x, gain: float = 1.0):
"""
Apply the Fourier feature transformation to the input tensor.
Args:
x (torch.Tensor): The input tensor.
gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1.
Returns:
torch.Tensor: The transformed tensor, with Fourier features applied.
"""
in_dtype = x.dtype
x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32))
x = x.cos().mul(self.gain * gain).to(in_dtype)
return x
class PatchEmbed(nn.Module):
"""
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
making it suitable for video and image processing tasks. It supports dividing the input into patches
and embedding each patch into a vector of size `out_channels`.
Parameters:
- spatial_patch_size (int): The size of each spatial patch.
- temporal_patch_size (int): The size of each temporal patch.
- in_channels (int): Number of input channels. Default: 3.
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
"""
def __init__(
self,
spatial_patch_size,
temporal_patch_size,
in_channels=3,
out_channels=768,
bias=True,
weight_args={},
operations=None,
):
super().__init__()
self.spatial_patch_size = spatial_patch_size
self.temporal_patch_size = temporal_patch_size
self.proj = nn.Sequential(
Rearrange(
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
r=temporal_patch_size,
m=spatial_patch_size,
n=spatial_patch_size,
),
operations.Linear(
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args
),
)
self.out = nn.Identity()
def forward(self, x):
"""
Forward pass of the PatchEmbed module.
Parameters:
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
B is the batch size,
C is the number of channels,
T is the temporal dimension,
H is the height, and
W is the width of the input.
Returns:
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
"""
assert x.dim() == 5
_, _, T, H, W = x.shape
assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
assert T % self.temporal_patch_size == 0
x = self.proj(x)
return self.out(x)
class FinalLayer(nn.Module):
"""
The final layer of video DiT.
"""
def __init__(
self,
hidden_size,
spatial_patch_size,
temporal_patch_size,
out_channels,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
weight_args={},
operations=None,
):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args)
self.linear = operations.Linear(
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args
)
self.hidden_size = hidden_size
self.n_adaln_chunks = 2
self.use_adaln_lora = use_adaln_lora
if use_adaln_lora:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args),
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args),
)
else:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args)
)
def forward(
self,
x_BT_HW_D,
emb_B_D,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
):
if self.use_adaln_lora:
assert adaln_lora_B_3D is not None
shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk(
2, dim=1
)
else:
shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1)
B = emb_B_D.shape[0]
T = x_BT_HW_D.shape[0] // B
shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T)
x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D)
x_BT_HW_D = self.linear(x_BT_HW_D)
return x_BT_HW_D
class VideoAttn(nn.Module):
"""
Implements video attention with optional cross-attention capabilities.
This module processes video features while maintaining their spatio-temporal structure. It can perform
self-attention within the video features or cross-attention with external context features.
Parameters:
x_dim (int): Dimension of input feature vectors
context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention
num_heads (int): Number of attention heads
bias (bool): Whether to include bias in attention projections. Default: False
qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head"
x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD"
Input shape:
- x: (T, H, W, B, D) video features
- context (optional): (M, B, D) context features for cross-attention
where:
T: temporal dimension
H: height
W: width
B: batch size
D: feature dimension
M: context sequence length
"""
def __init__(
self,
x_dim: int,
context_dim: Optional[int],
num_heads: int,
bias: bool = False,
qkv_norm_mode: str = "per_head",
x_format: str = "BTHWD",
weight_args={},
operations=None,
) -> None:
super().__init__()
self.x_format = x_format
self.attn = Attention(
x_dim,
context_dim,
num_heads,
x_dim // num_heads,
qkv_bias=bias,
qkv_norm="RRI",
out_bias=bias,
qkv_norm_mode=qkv_norm_mode,
qkv_format="sbhd",
weight_args=weight_args,
operations=operations,
)
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass for video attention.
Args:
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data.
context (Tensor): Context tensor of shape (B, M, D) or (M, B, D),
where M is the sequence length of the context.
crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms.
rope_emb_L_1_1_D (Optional[Tensor]):
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
Returns:
Tensor: The output tensor with applied attention, maintaining the input shape.
"""
x_T_H_W_B_D = x
context_M_B_D = context
T, H, W, B, D = x_T_H_W_B_D.shape
x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d")
x_THW_B_D = self.attn(
x_THW_B_D,
context_M_B_D,
crossattn_mask,
rope_emb=rope_emb_L_1_1_D,
)
x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W)
return x_T_H_W_B_D
def adaln_norm_state(norm_state, x, scale, shift):
normalized = norm_state(x)
return normalized * (1 + scale) + shift
class DITBuildingBlock(nn.Module):
"""
A building block for the DiT (Diffusion Transformer) architecture that supports different types of
attention and MLP operations with adaptive layer normalization.
Parameters:
block_type (str): Type of block - one of:
- "cross_attn"/"ca": Cross-attention
- "full_attn"/"fa": Full self-attention
- "mlp"/"ff": MLP/feedforward block
x_dim (int): Dimension of input features
context_dim (Optional[int]): Dimension of context features for cross-attention
num_heads (int): Number of attention heads
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
bias (bool): Whether to use bias in layers. Default: False
mlp_dropout (float): Dropout rate for MLP. Default: 0.0
qkv_norm_mode (str): QKV normalization mode. Default: "per_head"
x_format (str): Input tensor format. Default: "BTHWD"
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
"""
def __init__(
self,
block_type: str,
x_dim: int,
context_dim: Optional[int],
num_heads: int,
mlp_ratio: float = 4.0,
bias: bool = False,
mlp_dropout: float = 0.0,
qkv_norm_mode: str = "per_head",
x_format: str = "BTHWD",
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
weight_args={},
operations=None
) -> None:
block_type = block_type.lower()
super().__init__()
self.x_format = x_format
if block_type in ["cross_attn", "ca"]:
self.block = VideoAttn(
x_dim,
context_dim,
num_heads,
bias=bias,
qkv_norm_mode=qkv_norm_mode,
x_format=self.x_format,
weight_args=weight_args,
operations=operations,
)
elif block_type in ["full_attn", "fa"]:
self.block = VideoAttn(
x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations
)
elif block_type in ["mlp", "ff"]:
self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations)
else:
raise ValueError(f"Unknown block type: {block_type}")
self.block_type = block_type
self.use_adaln_lora = use_adaln_lora
self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6)
self.n_adaln_chunks = 3
if use_adaln_lora:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args),
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args),
)
else:
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args))
def forward(
self,
x: torch.Tensor,
emb_B_D: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass for dynamically configured blocks with adaptive normalization.
Args:
x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D).
emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation.
crossattn_emb (Tensor): Tensor for cross-attention blocks.
crossattn_mask (Optional[Tensor]): Optional mask for cross-attention.
rope_emb_L_1_1_D (Optional[Tensor]):
Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training.
Returns:
Tensor: The output tensor after processing through the configured block and adaptive normalization.
"""
if self.use_adaln_lora:
shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk(
self.n_adaln_chunks, dim=1
)
else:
shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1)
shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = (
shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0),
)
if self.block_type in ["mlp", "ff"]:
x = x + gate_1_1_1_B_D * self.block(
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
)
elif self.block_type in ["full_attn", "fa"]:
x = x + gate_1_1_1_B_D * self.block(
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
context=None,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
)
elif self.block_type in ["cross_attn", "ca"]:
x = x + gate_1_1_1_B_D * self.block(
adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D),
context=crossattn_emb,
crossattn_mask=crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
)
else:
raise ValueError(f"Unknown block type: {self.block_type}")
return x
class GeneralDITTransformerBlock(nn.Module):
"""
A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer.
Each block in the sequence is specified by a block configuration string.
Parameters:
x_dim (int): Dimension of input features
context_dim (int): Dimension of context features for cross-attention blocks
num_heads (int): Number of attention heads
block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention,
full-attention, then MLP)
mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0
x_format (str): Input tensor format. Default: "BTHWD"
use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False
adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256
The block_config string uses "-" to separate block types:
- "ca"/"cross_attn": Cross-attention block
- "fa"/"full_attn": Full self-attention block
- "mlp"/"ff": MLP/feedforward block
Example:
block_config = "ca-fa-mlp" creates a sequence of:
1. Cross-attention block
2. Full self-attention block
3. MLP block
"""
def __init__(
self,
x_dim: int,
context_dim: int,
num_heads: int,
block_config: str,
mlp_ratio: float = 4.0,
x_format: str = "BTHWD",
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
weight_args={},
operations=None
):
super().__init__()
self.blocks = nn.ModuleList()
self.x_format = x_format
for block_type in block_config.split("-"):
self.blocks.append(
DITBuildingBlock(
block_type,
x_dim,
context_dim,
num_heads,
mlp_ratio,
x_format=self.x_format,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
weight_args=weight_args,
operations=operations,
)
)
def forward(
self,
x: torch.Tensor,
emb_B_D: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x = x + extra_per_block_pos_emb
for block in self.blocks:
x = block(
x,
emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
)
return x

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,355 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The patcher and unpatcher implementation for 2D and 3D data.
The idea of Haar wavelet is to compute LL, LH, HL, HH component as two 1D convolutions.
One on the rows and one on the columns.
For example, in 1D signal, we have [a, b], then the low-freq compoenent is [a + b] / 2 and high-freq is [a - b] / 2.
We can use a 1D convolution with kernel [1, 1] and stride 2 to represent the L component.
For H component, we can use a 1D convolution with kernel [1, -1] and stride 2.
Although in principle, we typically only do additional Haar wavelet over the LL component. But here we do it for all
as we need to support downsampling for more than 2x.
For example, 4x downsampling can be done by 2x Haar and additional 2x Haar, and the shape would be.
[3, 256, 256] -> [12, 128, 128] -> [48, 64, 64]
"""
import torch
import torch.nn.functional as F
from einops import rearrange
_WAVELETS = {
"haar": torch.tensor([0.7071067811865476, 0.7071067811865476]),
"rearrange": torch.tensor([1.0, 1.0]),
}
_PERSISTENT = False
class Patcher(torch.nn.Module):
"""A module to convert image tensors into patches using torch operations.
The main difference from `class Patching` is that this module implements
all operations using torch, rather than python or numpy, for efficiency purpose.
It's bit-wise identical to the Patching module outputs, with the added
benefit of being torch.jit scriptable.
"""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__()
self.patch_size = patch_size
self.patch_method = patch_method
self.register_buffer(
"wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT
)
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item()))
self.register_buffer(
"_arange",
torch.arange(_WAVELETS[patch_method].shape[0]),
persistent=_PERSISTENT,
)
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
if self.patch_method == "haar":
return self._haar(x)
elif self.patch_method == "rearrange":
return self._arrange(x)
else:
raise ValueError("Unknown patch method: " + self.patch_method)
def _dwt(self, x, mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets.to(device=x.device)
n = h.shape[0]
g = x.shape[1]
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
x = F.pad(x, pad=(n - 2, n - 1, n - 2, n - 1), mode=mode).to(dtype)
xl = F.conv2d(x, hl.unsqueeze(2), groups=g, stride=(1, 2))
xh = F.conv2d(x, hh.unsqueeze(2), groups=g, stride=(1, 2))
xll = F.conv2d(xl, hl.unsqueeze(3), groups=g, stride=(2, 1))
xlh = F.conv2d(xl, hh.unsqueeze(3), groups=g, stride=(2, 1))
xhl = F.conv2d(xh, hl.unsqueeze(3), groups=g, stride=(2, 1))
xhh = F.conv2d(xh, hh.unsqueeze(3), groups=g, stride=(2, 1))
out = torch.cat([xll, xlh, xhl, xhh], dim=1)
if rescale:
out = out / 2
return out
def _haar(self, x):
for _ in self.range:
x = self._dwt(x, rescale=True)
return x
def _arrange(self, x):
x = rearrange(
x,
"b c (h p1) (w p2) -> b (c p1 p2) h w",
p1=self.patch_size,
p2=self.patch_size,
).contiguous()
return x
class Patcher3D(Patcher):
"""A 3D discrete wavelet transform for video data, expects 5D tensor, i.e. a batch of videos."""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__(patch_method=patch_method, patch_size=patch_size)
self.register_buffer(
"patch_size_buffer",
patch_size * torch.ones([1], dtype=torch.int32),
persistent=_PERSISTENT,
)
def _dwt(self, x, wavelet, mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets.to(device=x.device)
n = h.shape[0]
g = x.shape[1]
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
# Handles temporal axis.
x = F.pad(
x, pad=(max(0, n - 2), n - 1, n - 2, n - 1, n - 2, n - 1), mode=mode
).to(dtype)
xl = F.conv3d(x, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
xh = F.conv3d(x, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1))
# Handles spatial axes.
xll = F.conv3d(xl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xlh = F.conv3d(xl, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xhl = F.conv3d(xh, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xhh = F.conv3d(xh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1))
xlll = F.conv3d(xll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xllh = F.conv3d(xll, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlhl = F.conv3d(xlh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xlhh = F.conv3d(xlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhll = F.conv3d(xhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhlh = F.conv3d(xhl, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhhl = F.conv3d(xhh, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
xhhh = F.conv3d(xhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2))
out = torch.cat([xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh], dim=1)
if rescale:
out = out / (2 * torch.sqrt(torch.tensor(2.0)))
return out
def _haar(self, x):
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2)
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
for _ in self.range:
x = self._dwt(x, "haar", rescale=True)
return x
def _arrange(self, x):
xi, xv = torch.split(x, [1, x.shape[2] - 1], dim=2)
x = torch.cat([xi.repeat_interleave(self.patch_size, dim=2), xv], dim=2)
x = rearrange(
x,
"b c (t p1) (h p2) (w p3) -> b (c p1 p2 p3) t h w",
p1=self.patch_size,
p2=self.patch_size,
p3=self.patch_size,
).contiguous()
return x
class UnPatcher(torch.nn.Module):
"""A module to convert patches into image tensorsusing torch operations.
The main difference from `class Unpatching` is that this module implements
all operations using torch, rather than python or numpy, for efficiency purpose.
It's bit-wise identical to the Unpatching module outputs, with the added
benefit of being torch.jit scriptable.
"""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__()
self.patch_size = patch_size
self.patch_method = patch_method
self.register_buffer(
"wavelets", _WAVELETS[patch_method], persistent=_PERSISTENT
)
self.range = range(int(torch.log2(torch.tensor(self.patch_size)).item()))
self.register_buffer(
"_arange",
torch.arange(_WAVELETS[patch_method].shape[0]),
persistent=_PERSISTENT,
)
for param in self.parameters():
param.requires_grad = False
def forward(self, x):
if self.patch_method == "haar":
return self._ihaar(x)
elif self.patch_method == "rearrange":
return self._iarrange(x)
else:
raise ValueError("Unknown patch method: " + self.patch_method)
def _idwt(self, x, wavelet="haar", mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets.to(device=x.device)
n = h.shape[0]
g = x.shape[1] // 4
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1)
hh = hh.to(dtype=dtype)
hl = hl.to(dtype=dtype)
xll, xlh, xhl, xhh = torch.chunk(x.to(dtype), 4, dim=1)
# Inverse transform.
yl = torch.nn.functional.conv_transpose2d(
xll, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
)
yl += torch.nn.functional.conv_transpose2d(
xlh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
)
yh = torch.nn.functional.conv_transpose2d(
xhl, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
)
yh += torch.nn.functional.conv_transpose2d(
xhh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
)
y = torch.nn.functional.conv_transpose2d(
yl, hl.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2)
)
y += torch.nn.functional.conv_transpose2d(
yh, hh.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2)
)
if rescale:
y = y * 2
return y
def _ihaar(self, x):
for _ in self.range:
x = self._idwt(x, "haar", rescale=True)
return x
def _iarrange(self, x):
x = rearrange(
x,
"b (c p1 p2) h w -> b c (h p1) (w p2)",
p1=self.patch_size,
p2=self.patch_size,
)
return x
class UnPatcher3D(UnPatcher):
"""A 3D inverse discrete wavelet transform for video wavelet decompositions."""
def __init__(self, patch_size=1, patch_method="haar"):
super().__init__(patch_method=patch_method, patch_size=patch_size)
def _idwt(self, x, wavelet="haar", mode="reflect", rescale=False):
dtype = x.dtype
h = self.wavelets.to(device=x.device)
g = x.shape[1] // 8 # split into 8 spatio-temporal filtered tesnors.
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
hh = (h * ((-1) ** self._arange.to(device=x.device))).reshape(1, 1, -1).repeat(g, 1, 1)
hl = hl.to(dtype=dtype)
hh = hh.to(dtype=dtype)
xlll, xllh, xlhl, xlhh, xhll, xhlh, xhhl, xhhh = torch.chunk(x, 8, dim=1)
# Height height transposed convolutions.
xll = F.conv_transpose3d(
xlll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xll += F.conv_transpose3d(
xllh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xlh = F.conv_transpose3d(
xlhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xlh += F.conv_transpose3d(
xlhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xhl = F.conv_transpose3d(
xhll, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xhl += F.conv_transpose3d(
xhlh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xhh = F.conv_transpose3d(
xhhl, hl.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
xhh += F.conv_transpose3d(
xhhh, hh.unsqueeze(2).unsqueeze(3), groups=g, stride=(1, 1, 2)
)
# Handles width transposed convolutions.
xl = F.conv_transpose3d(
xll, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)
)
xl += F.conv_transpose3d(
xlh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)
)
xh = F.conv_transpose3d(
xhl, hl.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)
)
xh += F.conv_transpose3d(
xhh, hh.unsqueeze(2).unsqueeze(4), groups=g, stride=(1, 2, 1)
)
# Handles time axis transposed convolutions.
x = F.conv_transpose3d(
xl, hl.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1)
)
x += F.conv_transpose3d(
xh, hh.unsqueeze(3).unsqueeze(4), groups=g, stride=(2, 1, 1)
)
if rescale:
x = x * (2 * torch.sqrt(torch.tensor(2.0)))
return x
def _ihaar(self, x):
for _ in self.range:
x = self._idwt(x, "haar", rescale=True)
x = x[:, :, self.patch_size - 1 :, ...]
return x
def _iarrange(self, x):
x = rearrange(
x,
"b (c p1 p2 p3) t h w -> b c (t p1) (h p2) (w p3)",
p1=self.patch_size,
p2=self.patch_size,
p3=self.patch_size,
)
x = x[:, :, self.patch_size - 1 :, ...]
return x

View File

@ -0,0 +1,120 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Shared utilities for the networks module."""
from typing import Any
import torch
from einops import pack, rearrange, unpack
import comfy.ops
ops = comfy.ops.disable_weight_init
def time2batch(x: torch.Tensor) -> tuple[torch.Tensor, int]:
batch_size = x.shape[0]
return rearrange(x, "b c t h w -> (b t) c h w"), batch_size
def batch2time(x: torch.Tensor, batch_size: int) -> torch.Tensor:
return rearrange(x, "(b t) c h w -> b c t h w", b=batch_size)
def space2batch(x: torch.Tensor) -> tuple[torch.Tensor, int]:
batch_size, height = x.shape[0], x.shape[-2]
return rearrange(x, "b c t h w -> (b h w) c t"), batch_size, height
def batch2space(x: torch.Tensor, batch_size: int, height: int) -> torch.Tensor:
return rearrange(x, "(b h w) c t -> b c t h w", b=batch_size, h=height)
def cast_tuple(t: Any, length: int = 1) -> Any:
return t if isinstance(t, tuple) else ((t,) * length)
def replication_pad(x):
return torch.cat([x[:, :, :1, ...], x], dim=2)
def divisible_by(num: int, den: int) -> bool:
return (num % den) == 0
def is_odd(n: int) -> bool:
return not divisible_by(n, 2)
def nonlinearity(x):
return x * torch.sigmoid(x)
def Normalize(in_channels, num_groups=32):
return ops.GroupNorm(
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
)
class CausalNormalize(torch.nn.Module):
def __init__(self, in_channels, num_groups=1):
super().__init__()
self.norm = ops.GroupNorm(
num_groups=num_groups,
num_channels=in_channels,
eps=1e-6,
affine=True,
)
self.num_groups = num_groups
def forward(self, x):
# if num_groups !=1, we apply a spatio-temporal groupnorm for backward compatibility purpose.
# All new models should use num_groups=1, otherwise causality is not guaranteed.
if self.num_groups == 1:
x, batch_size = time2batch(x)
return batch2time(self.norm(x), batch_size)
return self.norm(x)
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def round_ste(z: torch.Tensor) -> torch.Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
def log(t, eps=1e-5):
return t.clamp(min=eps).log()
def entropy(prob):
return (-prob * log(prob)).sum(dim=-1)

510
comfy/ldm/cosmos/model.py Normal file
View File

@ -0,0 +1,510 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
"""
from typing import Optional, Tuple
import torch
from einops import rearrange
from torch import nn
from torchvision import transforms
from enum import Enum
import logging
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from .blocks import (
FinalLayer,
GeneralDITTransformerBlock,
PatchEmbed,
TimestepEmbedding,
Timesteps,
)
from .position_embedding import LearnablePosEmbAxis, VideoRopePosition3DEmb
class DataType(Enum):
IMAGE = "image"
VIDEO = "video"
class GeneralDIT(nn.Module):
"""
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
Args:
max_img_h (int): Maximum height of the input images.
max_img_w (int): Maximum width of the input images.
max_frames (int): Maximum number of frames in the video sequence.
in_channels (int): Number of input channels (e.g., RGB channels for color images).
out_channels (int): Number of output channels.
patch_spatial (tuple): Spatial resolution of patches for input processing.
patch_temporal (int): Temporal resolution of patches for input processing.
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
block_config (str): Configuration of the transformer block. See Notes for supported block types.
model_channels (int): Base number of channels used throughout the model.
num_blocks (int): Number of transformer blocks.
num_heads (int): Number of heads in the multi-head attention layers.
mlp_ratio (float): Expansion ratio for MLP blocks.
block_x_format (str): Format of input tensor for transformer blocks ('BTHWD' or 'THWBD').
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
use_cross_attn_mask (bool): Whether to use mask in cross-attention.
pos_emb_cls (str): Type of positional embeddings.
pos_emb_learnable (bool): Whether positional embeddings are learnable.
pos_emb_interpolation (str): Method for interpolating positional embeddings.
affline_emb_norm (bool): Whether to normalize affine embeddings.
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
extra_per_block_abs_pos_emb_type (str): Type of extra per-block positional embeddings.
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
Notes:
Supported block types in block_config:
* cross_attn, ca: Cross attention
* full_attn: Full attention on all flattened tokens
* mlp, ff: Feed forward block
"""
def __init__(
self,
max_img_h: int,
max_img_w: int,
max_frames: int,
in_channels: int,
out_channels: int,
patch_spatial: tuple,
patch_temporal: int,
concat_padding_mask: bool = True,
# attention settings
block_config: str = "FA-CA-MLP",
model_channels: int = 768,
num_blocks: int = 10,
num_heads: int = 16,
mlp_ratio: float = 4.0,
block_x_format: str = "BTHWD",
# cross attention settings
crossattn_emb_channels: int = 1024,
use_cross_attn_mask: bool = False,
# positional embedding settings
pos_emb_cls: str = "sincos",
pos_emb_learnable: bool = False,
pos_emb_interpolation: str = "crop",
affline_emb_norm: bool = False, # whether or not to normalize the affine embedding
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
rope_h_extrapolation_ratio: float = 1.0,
rope_w_extrapolation_ratio: float = 1.0,
rope_t_extrapolation_ratio: float = 1.0,
extra_per_block_abs_pos_emb: bool = False,
extra_per_block_abs_pos_emb_type: str = "sincos",
extra_h_extrapolation_ratio: float = 1.0,
extra_w_extrapolation_ratio: float = 1.0,
extra_t_extrapolation_ratio: float = 1.0,
image_model=None,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
self.max_img_h = max_img_h
self.max_img_w = max_img_w
self.max_frames = max_frames
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_spatial = patch_spatial
self.patch_temporal = patch_temporal
self.num_heads = num_heads
self.num_blocks = num_blocks
self.model_channels = model_channels
self.use_cross_attn_mask = use_cross_attn_mask
self.concat_padding_mask = concat_padding_mask
# positional embedding settings
self.pos_emb_cls = pos_emb_cls
self.pos_emb_learnable = pos_emb_learnable
self.pos_emb_interpolation = pos_emb_interpolation
self.affline_emb_norm = affline_emb_norm
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
self.extra_per_block_abs_pos_emb_type = extra_per_block_abs_pos_emb_type.lower()
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
self.dtype = dtype
weight_args = {"device": device, "dtype": dtype}
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
bias=False,
weight_args=weight_args,
operations=operations,
)
self.build_pos_embed(device=device)
self.block_x_format = block_x_format
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
self.t_embedder = nn.ModuleList(
[Timesteps(model_channels),
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, weight_args=weight_args, operations=operations),]
)
self.blocks = nn.ModuleDict()
for idx in range(num_blocks):
self.blocks[f"block{idx}"] = GeneralDITTransformerBlock(
x_dim=model_channels,
context_dim=crossattn_emb_channels,
num_heads=num_heads,
block_config=block_config,
mlp_ratio=mlp_ratio,
x_format=self.block_x_format,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
weight_args=weight_args,
operations=operations,
)
if self.affline_emb_norm:
logging.debug("Building affine embedding normalization layer")
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
else:
self.affline_norm = nn.Identity()
self.final_layer = FinalLayer(
hidden_size=self.model_channels,
spatial_patch_size=self.patch_spatial,
temporal_patch_size=self.patch_temporal,
out_channels=self.out_channels,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
weight_args=weight_args,
operations=operations,
)
def build_pos_embed(self, device=None):
if self.pos_emb_cls == "rope3d":
cls_type = VideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
device=device,
)
self.pos_embedder = cls_type(
**kwargs,
)
if self.extra_per_block_abs_pos_emb:
assert self.extra_per_block_abs_pos_emb_type in [
"learnable",
], f"Unknown extra_per_block_abs_pos_emb_type {self.extra_per_block_abs_pos_emb_type}"
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
kwargs["device"] = device
self.extra_pos_embedder = LearnablePosEmbAxis(
**kwargs,
)
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
`self.pos_embedder` with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
if padding_mask is not None:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
else:
padding_mask = torch.zeros((x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[-2], x_B_C_T_H_W.shape[-1]), dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
if "fps_aware" in self.pos_emb_cls:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
else:
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
def decoder_head(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_D: torch.Tensor,
crossattn_emb: torch.Tensor,
origin_shape: Tuple[int, int, int, int, int], # [B, C, T, H, W]
crossattn_mask: Optional[torch.Tensor] = None,
adaln_lora_B_3D: Optional[torch.Tensor] = None,
) -> torch.Tensor:
del crossattn_emb, crossattn_mask
B, C, T_before_patchify, H_before_patchify, W_before_patchify = origin_shape
x_BT_HW_D = rearrange(x_B_T_H_W_D, "B T H W D -> (B T) (H W) D")
x_BT_HW_D = self.final_layer(x_BT_HW_D, emb_B_D, adaln_lora_B_3D=adaln_lora_B_3D)
# This is to ensure x_BT_HW_D has the correct shape because
# when we merge T, H, W into one dimension, x_BT_HW_D has shape (B * T * H * W, 1*1, D).
x_BT_HW_D = x_BT_HW_D.view(
B * T_before_patchify // self.patch_temporal,
H_before_patchify // self.patch_spatial * W_before_patchify // self.patch_spatial,
-1,
)
x_B_D_T_H_W = rearrange(
x_BT_HW_D,
"(B T) (H W) (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
p1=self.patch_spatial,
p2=self.patch_spatial,
H=H_before_patchify // self.patch_spatial,
W=W_before_patchify // self.patch_spatial,
t=self.patch_temporal,
B=B,
)
return x_B_D_T_H_W
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log_info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder[1](self.t_embedder[0](timesteps.flatten()).to(x.dtype))
affline_emb_B_D = timesteps_B_D
affline_scale_log_info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
affline_scale_log_info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
if self.use_cross_attn_mask:
if crossattn_mask is not None and not torch.is_floating_point(crossattn_mask):
crossattn_mask = (crossattn_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max
crossattn_mask = crossattn_mask[:, None, None, :] # .to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
if self.blocks["block0"].x_format == "THWBD":
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
elif self.blocks["block0"].x_format == "BTHWD":
x = x_B_T_H_W_D
else:
raise ValueError(f"Unknown x_format {self.blocks[0].x_format}")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
# crossattn_emb: torch.Tensor,
# crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
):
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B,) used in lvg(long video generation), we add noise with this sigma to
augment condition input, the lvg model will condition on the condition_video_augment_sigma value;
we need forward_before_blocks pass to the forward_before_blocks function.
"""
crossattn_emb = context
crossattn_mask = attention_mask
inputs = self.forward_before_blocks(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
x, affline_emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D, adaln_lora_B_3D, original_shape = (
inputs["x"],
inputs["affline_emb_B_D"],
inputs["crossattn_emb"],
inputs["crossattn_mask"],
inputs["rope_emb_L_1_1_D"],
inputs["adaln_lora_B_3D"],
inputs["original_shape"],
)
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = inputs["extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D"].to(x.dtype)
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape} {original_shape}"
for _, block in self.blocks.items():
assert (
self.blocks["block0"].x_format == block.x_format
), f"First block has x_format {self.blocks[0].x_format}, got {block.x_format}"
x = block(
x,
affline_emb_B_D,
crossattn_emb,
crossattn_mask,
rope_emb_L_1_1_D=rope_emb_L_1_1_D,
adaln_lora_B_3D=adaln_lora_B_3D,
extra_per_block_pos_emb=extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
)
x_B_T_H_W_D = rearrange(x, "T H W B D -> B T H W D")
x_B_D_T_H_W = self.decoder_head(
x_B_T_H_W_D=x_B_T_H_W_D,
emb_B_D=affline_emb_B_D,
crossattn_emb=None,
origin_shape=original_shape,
crossattn_mask=None,
adaln_lora_B_3D=adaln_lora_B_3D,
)
return x_B_D_T_H_W

View File

@ -0,0 +1,207 @@
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import torch
from einops import rearrange, repeat
from torch import nn
import math
def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor:
"""
Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted.
Args:
x (torch.Tensor): The input tensor to normalize.
dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first.
eps (float, optional): A small constant to ensure numerical stability during division.
Returns:
torch.Tensor: The normalized tensor.
"""
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
class VideoPositionEmb(nn.Module):
def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor], device=None) -> torch.Tensor:
"""
It delegates the embedding generation to generate_embeddings function.
"""
B_T_H_W_C = x_B_T_H_W_C.shape
embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps, device=device)
return embeddings
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None):
raise NotImplementedError
class VideoRopePosition3DEmb(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
head_dim: int,
len_h: int,
len_w: int,
len_t: int,
base_fps: int = 24,
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
device=None,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
dim = head_dim
dim_h = dim // 6 * 2
dim_w = dim_h
dim_t = dim - 2 * dim_h
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
self.register_buffer(
"dim_spatial_range",
torch.arange(0, dim_h, 2, device=device)[: (dim_h // 2)].float() / dim_h,
persistent=False,
)
self.register_buffer(
"dim_temporal_range",
torch.arange(0, dim_t, 2, device=device)[: (dim_t // 2)].float() / dim_t,
persistent=False,
)
self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2))
self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2))
self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2))
def generate_embeddings(
self,
B_T_H_W_C: torch.Size,
fps: Optional[torch.Tensor] = None,
h_ntk_factor: Optional[float] = None,
w_ntk_factor: Optional[float] = None,
t_ntk_factor: Optional[float] = None,
device=None,
):
"""
Generate embeddings for the given input size.
Args:
B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels).
fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None.
h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor.
w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor.
t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor.
Returns:
Not specified in the original code snippet.
"""
h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor
w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor
t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor
h_theta = 10000.0 * h_ntk_factor
w_theta = 10000.0 * w_ntk_factor
t_theta = 10000.0 * t_ntk_factor
h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range.to(device=device))
w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range.to(device=device))
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))
B, T, H, W, _ = B_T_H_W_C
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None: # image case
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
else:
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)
half_emb_t = torch.stack([torch.cos(half_emb_t), -torch.sin(half_emb_t), torch.sin(half_emb_t), torch.cos(half_emb_t)], dim=-1)
em_T_H_W_D = torch.cat(
[
repeat(half_emb_t, "t d x -> t h w d x", h=H, w=W),
repeat(half_emb_h, "h d x -> t h w d x", t=T, w=W),
repeat(half_emb_w, "w d x -> t h w d x", t=T, h=H),
]
, dim=-2,
)
return rearrange(em_T_H_W_D, "t h w d (i j) -> (t h w) d i j", i=2, j=2).float()
class LearnablePosEmbAxis(VideoPositionEmb):
def __init__(
self,
*, # enforce keyword arguments
interpolation: str,
model_channels: int,
len_h: int,
len_w: int,
len_t: int,
device=None,
**kwargs,
):
"""
Args:
interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet.
"""
del kwargs # unused
super().__init__()
self.interpolation = interpolation
assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}"
self.pos_emb_h = nn.Parameter(torch.empty(len_h, model_channels, device=device))
self.pos_emb_w = nn.Parameter(torch.empty(len_w, model_channels, device=device))
self.pos_emb_t = nn.Parameter(torch.empty(len_t, model_channels, device=device))
def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None) -> torch.Tensor:
B, T, H, W, _ = B_T_H_W_C
if self.interpolation == "crop":
emb_h_H = self.pos_emb_h[:H].to(device=device)
emb_w_W = self.pos_emb_w[:W].to(device=device)
emb_t_T = self.pos_emb_t[:T].to(device=device)
emb = (
repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W)
+ repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W)
+ repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H)
)
assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}"
else:
raise ValueError(f"Unknown interpolation method {self.interpolation}")
return normalize(emb, dim=-1, eps=1e-6)

124
comfy/ldm/cosmos/vae.py Normal file
View File

@ -0,0 +1,124 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The causal continuous video tokenizer with VAE or AE formulation for 3D data.."""
import logging
import torch
from torch import nn
from enum import Enum
from .cosmos_tokenizer.layers3d import (
EncoderFactorized,
DecoderFactorized,
CausalConv3d,
)
class IdentityDistribution(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, parameters):
return parameters, (torch.tensor([0.0]), torch.tensor([0.0]))
class GaussianDistribution(torch.nn.Module):
def __init__(self, min_logvar: float = -30.0, max_logvar: float = 20.0):
super().__init__()
self.min_logvar = min_logvar
self.max_logvar = max_logvar
def sample(self, mean, logvar):
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)
def forward(self, parameters):
mean, logvar = torch.chunk(parameters, 2, dim=1)
logvar = torch.clamp(logvar, self.min_logvar, self.max_logvar)
return self.sample(mean, logvar), (mean, logvar)
class ContinuousFormulation(Enum):
VAE = GaussianDistribution
AE = IdentityDistribution
class CausalContinuousVideoTokenizer(nn.Module):
def __init__(
self, z_channels: int, z_factor: int, latent_channels: int, **kwargs
) -> None:
super().__init__()
self.name = kwargs.get("name", "CausalContinuousVideoTokenizer")
self.latent_channels = latent_channels
self.sigma_data = 0.5
# encoder_name = kwargs.get("encoder", Encoder3DType.BASE.name)
self.encoder = EncoderFactorized(
z_channels=z_factor * z_channels, **kwargs
)
if kwargs.get("temporal_compression", 4) == 4:
kwargs["channels_mult"] = [2, 4]
# decoder_name = kwargs.get("decoder", Decoder3DType.BASE.name)
self.decoder = DecoderFactorized(
z_channels=z_channels, **kwargs
)
self.quant_conv = CausalConv3d(
z_factor * z_channels,
z_factor * latent_channels,
kernel_size=1,
padding=0,
)
self.post_quant_conv = CausalConv3d(
latent_channels, z_channels, kernel_size=1, padding=0
)
# formulation_name = kwargs.get("formulation", ContinuousFormulation.AE.name)
self.distribution = IdentityDistribution() # ContinuousFormulation[formulation_name].value()
num_parameters = sum(param.numel() for param in self.parameters())
logging.info(f"model={self.name}, num_parameters={num_parameters:,}")
logging.info(
f"z_channels={z_channels}, latent_channels={self.latent_channels}."
)
latent_temporal_chunk = 16
self.latent_mean = nn.Parameter(torch.zeros([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
self.latent_std = nn.Parameter(torch.ones([self.latent_channels * latent_temporal_chunk], dtype=torch.float32))
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
z, posteriors = self.distribution(moments)
latent_ch = z.shape[1]
latent_t = z.shape[2]
dtype = z.dtype
mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device)
std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=dtype, device=z.device)
return ((z - mean) / std) * self.sigma_data
def decode(self, z):
in_dtype = z.dtype
latent_ch = z.shape[1]
latent_t = z.shape[2]
mean = self.latent_mean.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
std = self.latent_std.view(latent_ch, -1)[:, : latent_t].reshape([1, latent_ch, -1, 1, 1]).to(dtype=in_dtype, device=z.device)
z = z / self.sigma_data
z = z * std + mean
z = self.post_quant_conv(z)
return self.decoder(z)

View File

@ -168,7 +168,7 @@ class Flux(nn.Module):
out = blocks_replace[("single_block", i)]({"img": img, out = blocks_replace[("single_block", i)]({"img": img,
"vec": vec, "vec": vec,
"pe": pe, "pe": pe,
"attn_mask": attn_mask}, "attn_mask": attn_mask},
{"original_block": block_wrap}) {"original_block": block_wrap})
img = out["img"] img = out["img"]
else: else:

View File

@ -159,7 +159,7 @@ class CrossAttention(nn.Module):
q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C q = q.transpose(-2, -3).contiguous() # q -> B, L1, H, C - B, H, L1, C
k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2 k = k.transpose(-2, -3).contiguous() # k -> B, L2, H, C - B, H, C, L2
v = v.transpose(-2, -3).contiguous() v = v.transpose(-2, -3).contiguous()
context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision) context = optimized_attention(q, k, v, self.num_heads, skip_reshape=True, attn_precision=self.attn_precision)

View File

@ -456,9 +456,8 @@ class LTXVModel(torch.nn.Module):
x = self.patchify_proj(x) x = self.patchify_proj(x)
timestep = timestep * 1000.0 timestep = timestep * 1000.0
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype) pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)

View File

@ -89,7 +89,7 @@ class FeedForward(nn.Module):
def Normalize(in_channels, dtype=None, device=None): def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device) return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision)
if skip_reshape: if skip_reshape:
@ -142,16 +142,23 @@ def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
sim = sim.softmax(dim=-1) sim = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v) out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = (
out.unsqueeze(0) if skip_output_reshape:
.reshape(b, heads, -1, dim_head) out = (
.permute(0, 2, 1, 3) out.unsqueeze(0)
.reshape(b, -1, heads * dim_head) .reshape(b, heads, -1, dim_head)
) )
else:
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out return out
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision)
if skip_reshape: if skip_reshape:
@ -215,11 +222,13 @@ def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None,
) )
hidden_states = hidden_states.to(dtype) hidden_states = hidden_states.to(dtype)
if skip_output_reshape:
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2) hidden_states = hidden_states.unflatten(0, (-1, heads))
else:
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1,2).flatten(start_dim=2)
return hidden_states return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
attn_precision = get_attn_precision(attn_precision) attn_precision = get_attn_precision(attn_precision)
if skip_reshape: if skip_reshape:
@ -326,12 +335,18 @@ def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
del q, k, v del q, k, v
r1 = ( if skip_output_reshape:
r1.unsqueeze(0) r1 = (
.reshape(b, heads, -1, dim_head) r1.unsqueeze(0)
.permute(0, 2, 1, 3) .reshape(b, heads, -1, dim_head)
.reshape(b, -1, heads * dim_head) )
) else:
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1 return r1
BROKEN_XFORMERS = False BROKEN_XFORMERS = False
@ -342,7 +357,7 @@ try:
except: except:
pass pass
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
b = q.shape[0] b = q.shape[0]
dim_head = q.shape[-1] dim_head = q.shape[-1]
# check to make sure xformers isn't broken # check to make sure xformers isn't broken
@ -395,9 +410,12 @@ def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_resh
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask) out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
out = ( if skip_output_reshape:
out.reshape(b, -1, heads * dim_head) out = out.permute(0, 2, 1, 3)
) else:
out = (
out.reshape(b, -1, heads * dim_head)
)
return out return out
@ -408,7 +426,7 @@ else:
SDP_BATCH_LIMIT = 2**31 SDP_BATCH_LIMIT = 2**31
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape: if skip_reshape:
b, _, _, dim_head = q.shape b, _, _, dim_head = q.shape
else: else:
@ -429,9 +447,10 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
if SDP_BATCH_LIMIT >= b: if SDP_BATCH_LIMIT >= b:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = ( if not skip_output_reshape:
out.transpose(1, 2).reshape(b, -1, heads * dim_head) out = (
) out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else: else:
out = torch.empty((b, q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device) out = torch.empty((b, q.shape[2], heads * dim_head), dtype=q.dtype, layout=q.layout, device=q.device)
for i in range(0, b, SDP_BATCH_LIMIT): for i in range(0, b, SDP_BATCH_LIMIT):
@ -450,7 +469,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
return out return out
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False): def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape: if skip_reshape:
b, _, _, dim_head = q.shape b, _, _, dim_head = q.shape
tensor_layout="HND" tensor_layout="HND"
@ -473,11 +492,15 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout) out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
if tensor_layout == "HND": if tensor_layout == "HND":
out = ( if not skip_output_reshape:
out.transpose(1, 2).reshape(b, -1, heads * dim_head) out = (
) out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else: else:
out = out.reshape(b, -1, heads * dim_head) if skip_output_reshape:
out = out.transpose(1, 2)
else:
out = out.reshape(b, -1, heads * dim_head)
return out return out

View File

@ -17,10 +17,10 @@ import math
import logging import logging
try: try:
from typing import Optional, NamedTuple, List, Protocol from typing import Optional, NamedTuple, List, Protocol
except ImportError: except ImportError:
from typing import Optional, NamedTuple, List from typing import Optional, NamedTuple, List
from typing_extensions import Protocol from typing_extensions import Protocol
from typing import List from typing import List

View File

@ -194,4 +194,4 @@ class AdamWwithEMAandWings(optim.Optimizer):
for param, ema_param in zip(params_with_grad, ema_params_with_grad): for param, ema_param in zip(params_with_grad, ema_params_with_grad):
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay) ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
return loss return loss

View File

@ -33,6 +33,7 @@ import comfy.ldm.audio.embedders
import comfy.ldm.flux.model import comfy.ldm.flux.model
import comfy.ldm.lightricks.model import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.model_management import comfy.model_management
import comfy.patcher_extension import comfy.patcher_extension
@ -787,7 +788,7 @@ class Flux(BaseModel):
cross_attn = kwargs.get("cross_attn", None) cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None: if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
# upscale the attention mask, since now we # upscale the attention mask, since now we
attention_mask = kwargs.get("attention_mask", None) attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None: if attention_mask is not None:
shape = kwargs["noise"].shape shape = kwargs["noise"].shape
@ -856,3 +857,19 @@ class HunyuanVideo(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 6.0)])) out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 6.0)]))
return out return out
class CosmosVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.EDM, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.model.GeneralDIT)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
return out

View File

@ -239,6 +239,50 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["micro_condition"] = False dit_config["micro_condition"] = False
return dit_config return dit_config
if '{}blocks.block0.blocks.0.block.attn.to_q.0.weight'.format(key_prefix) in state_dict_keys:
dit_config = {}
dit_config["image_model"] = "cosmos"
dit_config["max_img_h"] = 240
dit_config["max_img_w"] = 240
dit_config["max_frames"] = 128
dit_config["in_channels"] = 16
dit_config["out_channels"] = 16
dit_config["patch_spatial"] = 2
dit_config["patch_temporal"] = 1
dit_config["model_channels"] = state_dict['{}blocks.block0.blocks.0.block.attn.to_q.0.weight'.format(key_prefix)].shape[0]
dit_config["block_config"] = "FA-CA-MLP"
dit_config["concat_padding_mask"] = True
dit_config["pos_emb_cls"] = "rope3d"
dit_config["pos_emb_learnable"] = False
dit_config["pos_emb_interpolation"] = "crop"
dit_config["block_x_format"] = "THWBD"
dit_config["affline_emb_norm"] = True
dit_config["use_adaln_lora"] = True
dit_config["adaln_lora_dim"] = 256
if dit_config["model_channels"] == 4096:
# 7B
dit_config["num_blocks"] = 28
dit_config["num_heads"] = 32
dit_config["extra_per_block_abs_pos_emb"] = True
dit_config["rope_h_extrapolation_ratio"] = 1.0
dit_config["rope_w_extrapolation_ratio"] = 1.0
dit_config["rope_t_extrapolation_ratio"] = 2.0
dit_config["extra_per_block_abs_pos_emb_type"] = "learnable"
else: # 5120
# 14B
dit_config["num_blocks"] = 36
dit_config["num_heads"] = 40
dit_config["extra_per_block_abs_pos_emb"] = True
dit_config["rope_h_extrapolation_ratio"] = 2.0
dit_config["rope_w_extrapolation_ratio"] = 2.0
dit_config["rope_t_extrapolation_ratio"] = 2.0
dit_config["extra_h_extrapolation_ratio"] = 2.0
dit_config["extra_w_extrapolation_ratio"] = 2.0
dit_config["extra_t_extrapolation_ratio"] = 2.0
dit_config["extra_per_block_abs_pos_emb_type"] = "learnable"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys: if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None return None
@ -393,6 +437,7 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
def unet_prefix_from_state_dict(state_dict): def unet_prefix_from_state_dict(state_dict):
candidates = ["model.diffusion_model.", #ldm/sgm models candidates = ["model.diffusion_model.", #ldm/sgm models
"model.model.", #audio models "model.model.", #audio models
"net.", #cosmos
] ]
counts = {k: 0 for k in candidates} counts = {k: 0 for k in candidates}
for k in state_dict: for k in state_dict:
@ -576,7 +621,7 @@ def unet_config_from_diffusers_unet(state_dict, dtype=None):
'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0],
'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8,
'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
'use_temporal_attention': False, 'use_temporal_resblock': False} 'use_temporal_attention': False, 'use_temporal_resblock': False}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint] supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega, KOALA_700M, KOALA_1B, SD09_XS, SD_XS, SDXL_diffusers_ip2p, SD15_diffusers_inpaint]

View File

@ -1121,18 +1121,13 @@ def soft_empty_cache(force=False):
elif is_ascend_npu(): elif is_ascend_npu():
torch.npu.empty_cache() torch.npu.empty_cache()
elif torch.cuda.is_available(): elif torch.cuda.is_available():
if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda torch.cuda.empty_cache()
torch.cuda.empty_cache() torch.cuda.ipc_collect()
torch.cuda.ipc_collect()
def unload_all_models(): def unload_all_models():
free_memory(1e30, get_torch_device()) free_memory(1e30, get_torch_device())
def resolve_lowvram_weight(weight, model, key): #TODO: remove
logging.warning("The comfy.model_management.resolve_lowvram_weight function will be removed soon, please stop using it.")
return weight
#TODO: might be cleaner to put this somewhere else #TODO: might be cleaner to put this somewhere else
import threading import threading

View File

@ -402,7 +402,20 @@ class ModelPatcher:
def add_object_patch(self, name, obj): def add_object_patch(self, name, obj):
self.object_patches[name] = obj self.object_patches[name] = obj
def get_model_object(self, name): def get_model_object(self, name: str) -> torch.nn.Module:
"""Retrieves a nested attribute from an object using dot notation considering
object patches.
Args:
name (str): The attribute path using dot notation (e.g. "model.layer.weight")
Returns:
The value of the requested attribute
Example:
patcher = ModelPatcher()
weight = patcher.get_model_object("layer1.conv.weight")
"""
if name in self.object_patches: if name in self.object_patches:
return self.object_patches[name] return self.object_patches[name]
else: else:
@ -919,11 +932,12 @@ class ModelPatcher:
def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode): def set_hook_mode(self, hook_mode: comfy.hooks.EnumHookMode):
self.hook_mode = hook_mode self.hook_mode = hook_mode
def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup): def prepare_hook_patches_current_keyframe(self, t: torch.Tensor, hook_group: comfy.hooks.HookGroup, model_options: dict[str]):
curr_t = t[0] curr_t = t[0]
reset_current_hooks = False reset_current_hooks = False
transformer_options = model_options.get("transformer_options", {})
for hook in hook_group.hooks: for hook in hook_group.hooks:
changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t) changed = hook.hook_keyframe.prepare_current_keyframe(curr_t=curr_t, transformer_options=transformer_options)
# if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref; # if keyframe changed, remove any cached HookGroups that contain hook with the same hook_ref;
# this will cause the weights to be recalculated when sampling # this will cause the weights to be recalculated when sampling
if changed: if changed:

View File

@ -1,12 +1,13 @@
from __future__ import annotations from __future__ import annotations
from .k_diffusion import sampling as k_diffusion_sampling from .k_diffusion import sampling as k_diffusion_sampling
from .extra_samplers import uni_pc from .extra_samplers import uni_pc
from typing import TYPE_CHECKING from typing import TYPE_CHECKING, Callable, NamedTuple
if TYPE_CHECKING: if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher from comfy.model_patcher import ModelPatcher
from comfy.model_base import BaseModel from comfy.model_base import BaseModel
from comfy.controlnet import ControlBase from comfy.controlnet import ControlBase
import torch import torch
from functools import partial
import collections import collections
from comfy import model_management from comfy import model_management
import math import math
@ -144,7 +145,7 @@ def cond_cat(c_list):
return out return out
def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]], default_conds: list[list[dict]], x_in, timestep): def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.HookGroup,list[tuple[tuple,int]]], default_conds: list[list[dict]], x_in, timestep, model_options):
# need to figure out remaining unmasked area for conds # need to figure out remaining unmasked area for conds
default_mults = [] default_mults = []
for _ in default_conds: for _ in default_conds:
@ -183,7 +184,7 @@ def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.H
# replace p's mult with calculated mult # replace p's mult with calculated mult
p = p._replace(mult=mult) p = p._replace(mult=mult)
if p.hooks is not None: if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks) model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list()) hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)] hooked_to_run[p.hooks] += [(p, i)]
@ -218,13 +219,13 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
if p is None: if p is None:
continue continue
if p.hooks is not None: if p.hooks is not None:
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks) model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
hooked_to_run.setdefault(p.hooks, list()) hooked_to_run.setdefault(p.hooks, list())
hooked_to_run[p.hooks] += [(p, i)] hooked_to_run[p.hooks] += [(p, i)]
default_conds.append(default_c) default_conds.append(default_c)
if has_default_conds: if has_default_conds:
finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep) finalize_default_conds(model, hooked_to_run, default_conds, x_in, timestep, model_options)
model.current_patcher.prepare_state(timestep) model.current_patcher.prepare_state(timestep)
@ -467,6 +468,13 @@ def linear_quadratic_schedule(model_sampling, steps, threshold_noise=0.025, line
sigma_schedule = [1.0 - x for x in sigma_schedule] sigma_schedule = [1.0 - x for x in sigma_schedule]
return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu() return torch.FloatTensor(sigma_schedule) * model_sampling.sigma_max.cpu()
# Referenced from https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/15608
def kl_optimal_scheduler(n: int, sigma_min: float, sigma_max: float) -> torch.Tensor:
adj_idxs = torch.arange(n, dtype=torch.float).div_(n - 1)
sigmas = adj_idxs.new_zeros(n + 1)
sigmas[:-1] = (adj_idxs * math.atan(sigma_min) + (1 - adj_idxs) * math.atan(sigma_max)).tan_()
return sigmas
def get_mask_aabb(masks): def get_mask_aabb(masks):
if masks.numel() == 0: if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device, dtype=torch.int) return torch.zeros((0, 4), device=masks.device, dtype=torch.int)
@ -840,7 +848,9 @@ class CFGGuider:
self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed) self.conds = process_conds(self.inner_model, noise, self.conds, device, latent_image, denoise_mask, seed)
extra_args = {"model_options": comfy.model_patcher.create_model_options_clone(self.model_options), "seed": seed} extra_model_options = comfy.model_patcher.create_model_options_clone(self.model_options)
extra_model_options.setdefault("transformer_options", {})["sample_sigmas"] = sigmas
extra_args = {"model_options": extra_model_options, "seed": seed}
executor = comfy.patcher_extension.WrapperExecutor.new_class_executor( executor = comfy.patcher_extension.WrapperExecutor.new_class_executor(
sampler.sample, sampler.sample,
@ -911,29 +921,37 @@ def sample(model, noise, positive, negative, cfg, device, sampler, sigmas, model
return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed) return cfg_guider.sample(noise, latent_image, sampler, sigmas, denoise_mask, callback, disable_pbar, seed)
SCHEDULER_NAMES = ["normal", "karras", "exponential", "sgm_uniform", "simple", "ddim_uniform", "beta", "linear_quadratic"]
SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"] SAMPLER_NAMES = KSAMPLER_NAMES + ["ddim", "uni_pc", "uni_pc_bh2"]
def calculate_sigmas(model_sampling, scheduler_name, steps): class SchedulerHandler(NamedTuple):
if scheduler_name == "karras": handler: Callable[..., torch.Tensor]
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) # Boolean indicates whether to call the handler like:
elif scheduler_name == "exponential": # scheduler_function(model_sampling, steps) or
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max)) # scheduler_function(n, sigma_min: float, sigma_max: float)
elif scheduler_name == "normal": use_ms: bool = True
sigmas = normal_scheduler(model_sampling, steps)
elif scheduler_name == "simple": SCHEDULER_HANDLERS = {
sigmas = simple_scheduler(model_sampling, steps) "normal": SchedulerHandler(normal_scheduler),
elif scheduler_name == "ddim_uniform": "karras": SchedulerHandler(k_diffusion_sampling.get_sigmas_karras, use_ms=False),
sigmas = ddim_scheduler(model_sampling, steps) "exponential": SchedulerHandler(k_diffusion_sampling.get_sigmas_exponential, use_ms=False),
elif scheduler_name == "sgm_uniform": "sgm_uniform": SchedulerHandler(partial(normal_scheduler, sgm=True)),
sigmas = normal_scheduler(model_sampling, steps, sgm=True) "simple": SchedulerHandler(simple_scheduler),
elif scheduler_name == "beta": "ddim_uniform": SchedulerHandler(ddim_scheduler),
sigmas = beta_scheduler(model_sampling, steps) "beta": SchedulerHandler(beta_scheduler),
elif scheduler_name == "linear_quadratic": "linear_quadratic": SchedulerHandler(linear_quadratic_schedule),
sigmas = linear_quadratic_schedule(model_sampling, steps) "kl_optimal": SchedulerHandler(kl_optimal_scheduler, use_ms=False),
else: }
logging.error("error invalid scheduler {}".format(scheduler_name)) SCHEDULER_NAMES = list(SCHEDULER_HANDLERS)
return sigmas
def calculate_sigmas(model_sampling: object, scheduler_name: str, steps: int) -> torch.Tensor:
handler = SCHEDULER_HANDLERS.get(scheduler_name)
if handler is None:
err = f"error invalid scheduler {scheduler_name}"
logging.error(err)
raise ValueError(err)
if handler.use_ms:
return handler.handler(model_sampling, steps)
return handler.handler(n=steps, sigma_min=float(model_sampling.sigma_min), sigma_max=float(model_sampling.sigma_max))
def sampler_object(name): def sampler_object(name):
if name == "uni_pc": if name == "uni_pc":

View File

@ -11,6 +11,7 @@ from .ldm.cascade.stage_c_coder import StageC_coder
from .ldm.audio.autoencoder import AudioOobleckVAE from .ldm.audio.autoencoder import AudioOobleckVAE
import comfy.ldm.genmo.vae.model import comfy.ldm.genmo.vae.model
import comfy.ldm.lightricks.vae.causal_video_autoencoder import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import yaml import yaml
import math import math
@ -34,6 +35,7 @@ import comfy.text_encoders.long_clipl
import comfy.text_encoders.genmo import comfy.text_encoders.genmo
import comfy.text_encoders.lt import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.model_patcher import comfy.model_patcher
import comfy.lora import comfy.lora
@ -111,7 +113,7 @@ class CLIP:
model_management.load_models_gpu([self.patcher], force_full_load=True) model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None self.layer_idx = None
self.use_clip_schedule = False self.use_clip_schedule = False
logging.info("CLIP model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype)) logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
def clone(self): def clone(self):
n = CLIP(no_init=True) n = CLIP(no_init=True)
@ -376,6 +378,19 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype) self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype) self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32] self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
elif "decoder.unpatcher3d.wavelets" in sd:
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8)
self.upscale_index_formula = (8, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 8, 8)
self.downscale_index_formula = (8, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
ddconfig = {'z_channels': 16, 'latent_channels': self.latent_channels, 'z_factor': 1, 'resolution': 1024, 'in_channels': 3, 'out_channels': 3, 'channels': 128, 'channels_mult': [2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [32], 'dropout': 0.0, 'patch_size': 4, 'num_groups': 1, 'temporal_compression': 8, 'spacial_compression': 8}
self.first_stage_model = comfy.ldm.cosmos.vae.CausalContinuousVideoTokenizer(**ddconfig)
#TODO: these values are a bit off because this is not a standard VAE
self.memory_used_decode = lambda shape, dtype: (220 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (500 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float32]
else: else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.") logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None self.first_stage_model = None
@ -641,6 +656,7 @@ class CLIPType(Enum):
LTXV = 8 LTXV = 8
HUNYUAN_VIDEO = 9 HUNYUAN_VIDEO = 9
PIXART = 10 PIXART = 10
COSMOS = 11
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}): def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@ -658,6 +674,7 @@ class TEModel(Enum):
T5_XL = 5 T5_XL = 5
T5_BASE = 6 T5_BASE = 6
LLAMA3_8 = 7 LLAMA3_8 = 7
T5_XXL_OLD = 8
def detect_te_model(sd): def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd: if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@ -672,6 +689,8 @@ def detect_te_model(sd):
return TEModel.T5_XXL return TEModel.T5_XXL
elif weight.shape[-1] == 2048: elif weight.shape[-1] == 2048:
return TEModel.T5_XL return TEModel.T5_XL
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd: if "encoder.block.0.layer.0.SelfAttention.k.weight" in sd:
return TEModel.T5_BASE return TEModel.T5_BASE
if "model.layers.0.post_attention_layernorm.weight" in sd: if "model.layers.0.post_attention_layernorm.weight" in sd:
@ -681,9 +700,10 @@ def detect_te_model(sd):
def t5xxl_detect(clip_data): def t5xxl_detect(clip_data):
weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" weight_name = "encoder.block.23.layer.1.DenseReluDense.wi_1.weight"
weight_name_old = "encoder.block.23.layer.1.DenseReluDense.wi.weight"
for sd in clip_data: for sd in clip_data:
if weight_name in sd: if weight_name in sd or weight_name_old in sd:
return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd) return comfy.text_encoders.sd3_clip.t5_xxl_detect(sd)
return {} return {}
@ -740,6 +760,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
else: #CLIPType.MOCHI else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data)) clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
elif te_model == TEModel.T5_XXL_OLD:
clip_target.clip = comfy.text_encoders.cosmos.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.cosmos.CosmosT5Tokenizer
elif te_model == TEModel.T5_XL: elif te_model == TEModel.T5_XL:
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
@ -898,7 +921,7 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_model: if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device()) model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"): if inital_load_device != torch.device("cpu"):
logging.info("loaded straight to GPU") logging.info("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True) model_management.load_models_gpu([model_patcher], force_full_load=True)
return (model_patcher, clip, vae, clipvision) return (model_patcher, clip, vae, clipvision)

View File

@ -14,6 +14,7 @@ import comfy.text_encoders.flux
import comfy.text_encoders.genmo import comfy.text_encoders.genmo
import comfy.text_encoders.lt import comfy.text_encoders.lt
import comfy.text_encoders.hunyuan_video import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
from . import supported_models_base from . import supported_models_base
from . import latent_formats from . import latent_formats
@ -823,6 +824,37 @@ class HunyuanVideo(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref)) hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}llama.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect)) return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer, comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**hunyuan_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo] class Cosmos(supported_models_base.BASE):
unet_config = {
"image_model": "cosmos",
}
sampling_settings = {
"sigma_data": 0.5,
"sigma_max": 80.0,
"sigma_min": 0.002,
}
unet_extra_config = {}
latent_format = latent_formats.Cosmos1CV8x8x8
memory_usage_factor = 2.4 #TODO
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32] #TODO
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosVideo(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideo, Cosmos]
models += [SVD_img2vid] models += [SVD_img2vid]

View File

@ -0,0 +1,42 @@
from comfy import sd1_clip
import comfy.text_encoders.t5
import os
from transformers import T5TokenizerFast
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_old_config_xxl.json")
t5xxl_scaled_fp8 = model_options.get("t5xxl_scaled_fp8", None)
if t5xxl_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = t5xxl_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, zero_out_masked=attention_mask, model_options=model_options)
class CosmosT5XXL(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
def te(dtype_t5=None, t5xxl_scaled_fp8=None):
class CosmosTEModel_(CosmosT5XXL):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if dtype is None:
dtype = dtype_t5
super().__init__(device=device, dtype=dtype, model_options=model_options)
return CosmosTEModel_

View File

@ -227,8 +227,9 @@ class T5(torch.nn.Module):
super().__init__() super().__init__()
self.num_layers = config_dict["num_layers"] self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"] model_dim = config_dict["d_model"]
inner_dim = config_dict["d_kv"] * config_dict["num_heads"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations) self.encoder = T5Stack(self.num_layers, model_dim, inner_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
self.dtype = dtype self.dtype = dtype
self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype) self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype)

View File

@ -0,0 +1,22 @@
{
"d_ff": 65536,
"d_kv": 128,
"d_model": 1024,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "relu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"is_gated_act": false,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 24,
"num_heads": 128,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 32128
}

View File

@ -693,7 +693,25 @@ def copy_to_param(obj, attr, value):
prev = getattr(obj, attrs[-1]) prev = getattr(obj, attrs[-1])
prev.data.copy_(value) prev.data.copy_(value)
def get_attr(obj, attr): def get_attr(obj, attr: str):
"""Retrieves a nested attribute from an object using dot notation.
Args:
obj: The object to get the attribute from
attr (str): The attribute path using dot notation (e.g. "model.layer.weight")
Returns:
The value of the requested attribute
Example:
model = MyModel()
weight = get_attr(model, "layer1.conv.weight")
# Equivalent to: model.layer1.conv.weight
Important:
Always prefer `comfy.model_patcher.ModelPatcher.get_model_object` when
accessing nested model objects under `ModelPatcher.model`.
"""
attrs = attr.split(".") attrs = attr.split(".")
for name in attrs: for name in attrs:
obj = getattr(obj, name) obj = getattr(obj, name)
@ -727,7 +745,7 @@ def bislerp(samples, width, height):
res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c) res *= (b1_norms * (1.0-r) + b2_norms * r).expand(-1,c)
#edge cases for same or polar opposites #edge cases for same or polar opposites
res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5]
res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1] res[dot < 1e-5 - 1] = (b1 * (1.0-r) + b2 * r)[dot < 1e-5 - 1]
return res return res
@ -893,7 +911,7 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device) out = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device) out_div = torch.zeros([s.shape[0], out_channels] + mult_list_upscale(s.shape[2:]), device=output_device)
positions = [range(0, s.shape[d+2], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)] positions = [range(0, s.shape[d+2] - overlap[d], tile[d] - overlap[d]) if s.shape[d+2] > tile[d] else [0] for d in range(dims)]
for it in itertools.product(*positions): for it in itertools.product(*positions):
s_in = s s_in = s

View File

@ -54,8 +54,8 @@ class DynamicPrompt:
def get_original_prompt(self): def get_original_prompt(self):
return self.original_prompt return self.original_prompt
def get_input_info(class_def, input_name): def get_input_info(class_def, input_name, valid_inputs=None):
valid_inputs = class_def.INPUT_TYPES() valid_inputs = valid_inputs or class_def.INPUT_TYPES()
input_info = None input_info = None
input_category = None input_category = None
if "required" in valid_inputs and input_name in valid_inputs["required"]: if "required" in valid_inputs and input_name in valid_inputs["required"]:

View File

@ -0,0 +1,23 @@
import nodes
import torch
import comfy.model_management
class EmptyCosmosLatentVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"height": ("INT", {"default": 704, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
"length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/video"
def generate(self, width, height, length, batch_size=1):
latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
return ({"samples":latent}, )
NODE_CLASS_MAPPINGS = {
"EmptyCosmosLatentVideo": EmptyCosmosLatentVideo,
}

View File

@ -162,7 +162,7 @@ NOISE_LEVELS = {
[14.61464119, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753], [14.61464119, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753], [14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.86115354, 0.69515091, 0.54755926, 0.43325692, 0.34370604, 0.25053367, 0.17026083, 0.09824532, 0.02916753],
[14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.89115214, 0.72133851, 0.59516323, 0.4783645, 0.38853383, 0.29807833, 0.22545385, 0.17026083, 0.09824532, 0.02916753], [14.61464119, 11.54541874, 7.49001646, 5.85520077, 4.45427561, 3.46139455, 2.84484982, 2.19988537, 1.72759056, 1.36964464, 1.08895338, 0.89115214, 0.72133851, 0.59516323, 0.4783645, 0.38853383, 0.29807833, 0.22545385, 0.17026083, 0.09824532, 0.02916753],
], ],
1.15: [ 1.15: [
[14.61464119, 0.83188516, 0.02916753], [14.61464119, 0.83188516, 0.02916753],
[14.61464119, 1.84880662, 0.59516323, 0.02916753], [14.61464119, 1.84880662, 0.59516323, 0.02916753],
@ -246,7 +246,7 @@ NOISE_LEVELS = {
[14.61464119, 5.85520077, 2.84484982, 1.72759056, 1.162866, 0.83188516, 0.64427125, 0.52423614, 0.43325692, 0.36617002, 0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753], [14.61464119, 5.85520077, 2.84484982, 1.72759056, 1.162866, 0.83188516, 0.64427125, 0.52423614, 0.43325692, 0.36617002, 0.32104823, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018, 0.45573691, 0.38853383, 0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753], [14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018, 0.45573691, 0.38853383, 0.34370604, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
[14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018, 0.4783645, 0.41087446, 0.36617002, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753], [14.61464119, 5.85520077, 2.84484982, 1.78698075, 1.24153244, 0.92192322, 0.72133851, 0.57119018, 0.4783645, 0.41087446, 0.36617002, 0.32104823, 0.29807833, 0.27464288, 0.25053367, 0.22545385, 0.19894916, 0.17026083, 0.13792117, 0.09824532, 0.02916753],
], ],
1.35: [ 1.35: [
[14.61464119, 0.69515091, 0.02916753], [14.61464119, 0.69515091, 0.02916753],
[14.61464119, 0.95350921, 0.34370604, 0.02916753], [14.61464119, 0.95350921, 0.34370604, 0.02916753],

View File

@ -26,6 +26,7 @@ class Load3D():
"bg_color": ("STRING", {"default": "#000000", "multiline": False}), "bg_color": ("STRING", {"default": "#000000", "multiline": False}),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}), "light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],), "up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}} }}
RETURN_TYPES = ("IMAGE", "MASK", "STRING") RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@ -37,13 +38,22 @@ class Load3D():
CATEGORY = "3d" CATEGORY = "3d"
def process(self, model_file, image, **kwargs): def process(self, model_file, image, **kwargs):
imagepath = folder_paths.get_annotated_filepath(image) if isinstance(image, dict):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
load_image_node = nodes.LoadImage() load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
output_image, output_mask = load_image_node.load_image(image=imagepath) return output_image, output_mask, model_file,
else:
return output_image, output_mask, model_file, # to avoid the format is not dict which will happen the FE code is not compatibility to core,
# we need to this to double-check, it can be removed after merged FE into the core
image_path = folder_paths.get_annotated_filepath(image)
load_image_node = nodes.LoadImage()
output_image, output_mask = load_image_node.load_image(image=image_path)
return output_image, output_mask, model_file,
class Load3DAnimation(): class Load3DAnimation():
@classmethod @classmethod
@ -67,6 +77,7 @@ class Load3DAnimation():
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}), "light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],), "up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"animation_speed": (["0.1", "0.5", "1", "1.5", "2"], {"default": "1"}), "animation_speed": (["0.1", "0.5", "1", "1.5", "2"], {"default": "1"}),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}} }}
RETURN_TYPES = ("IMAGE", "MASK", "STRING") RETURN_TYPES = ("IMAGE", "MASK", "STRING")
@ -78,13 +89,20 @@ class Load3DAnimation():
CATEGORY = "3d" CATEGORY = "3d"
def process(self, model_file, image, **kwargs): def process(self, model_file, image, **kwargs):
imagepath = folder_paths.get_annotated_filepath(image) if isinstance(image, dict):
image_path = folder_paths.get_annotated_filepath(image['image'])
mask_path = folder_paths.get_annotated_filepath(image['mask'])
load_image_node = nodes.LoadImage() load_image_node = nodes.LoadImage()
output_image, ignore_mask = load_image_node.load_image(image=image_path)
ignore_image, output_mask = load_image_node.load_image(image=mask_path)
output_image, output_mask = load_image_node.load_image(image=imagepath) return output_image, output_mask, model_file,
else:
return output_image, output_mask, model_file, image_path = folder_paths.get_annotated_filepath(image)
load_image_node = nodes.LoadImage()
output_image, output_mask = load_image_node.load_image(image=image_path)
return output_image, output_mask, model_file,
class Preview3D(): class Preview3D():
@classmethod @classmethod
@ -98,6 +116,7 @@ class Preview3D():
"bg_color": ("STRING", {"default": "#000000", "multiline": False}), "bg_color": ("STRING", {"default": "#000000", "multiline": False}),
"light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}), "light_intensity": ("INT", {"default": 10, "min": 1, "max": 20, "step": 1}),
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],), "up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
"fov": ("INT", {"default": 75, "min": 10, "max": 150, "step": 1}),
}} }}
OUTPUT_NODE = True OUTPUT_NODE = True
@ -121,4 +140,4 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"Load3D": "Load 3D", "Load3D": "Load 3D",
"Load3DAnimation": "Load 3D - Animation", "Load3DAnimation": "Load 3D - Animation",
"Preview3D": "Preview 3D" "Preview3D": "Preview 3D"
} }

View File

@ -46,4 +46,4 @@ NODE_CLASS_MAPPINGS = {
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"Morphology": "ImageMorphology", "Morphology": "ImageMorphology",
} }

View File

@ -73,7 +73,7 @@ class Guider_PerpNeg(comfy.samplers.CFGGuider):
comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options) comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options)
cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg) cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg)
# normally this would be done in cfg_function, but we skipped # normally this would be done in cfg_function, but we skipped
# that for efficiency: we can compute the noise predictions in # that for efficiency: we can compute the noise predictions in
# a single call to calc_cond_batch() (rather than two) # a single call to calc_cond_batch() (rather than two)
# so we replicate the hook here # so we replicate the hook here

View File

@ -30,4 +30,4 @@ NODE_CLASS_MAPPINGS = {
NODE_DISPLAY_NAME_MAPPINGS = { NODE_DISPLAY_NAME_MAPPINGS = {
"WebcamCapture": "Webcam Capture", "WebcamCapture": "Webcam Capture",
} }

View File

@ -62,7 +62,7 @@ class IsChangedCache:
class CacheSet: class CacheSet:
def __init__(self, lru_size=None): def __init__(self, lru_size=None):
if lru_size is None or lru_size == 0: if lru_size is None or lru_size == 0:
self.init_classic_cache() self.init_classic_cache()
else: else:
self.init_lru_cache(lru_size) self.init_lru_cache(lru_size)
self.all = [self.outputs, self.ui, self.objects] self.all = [self.outputs, self.ui, self.objects]
@ -93,7 +93,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
missing_keys = {} missing_keys = {}
for x in inputs: for x in inputs:
input_data = inputs[x] input_data = inputs[x]
input_type, input_category, input_info = get_input_info(class_def, x) input_type, input_category, input_info = get_input_info(class_def, x, valid_inputs)
def mark_missing(): def mark_missing():
missing_keys[x] = True missing_keys[x] = True
input_data_all[x] = (None,) input_data_all[x] = (None,)
@ -168,7 +168,7 @@ def _map_node_over_list(obj, input_data_all, func, allow_interrupt=False, execut
process_inputs(input_data_all, 0, input_is_list=input_is_list) process_inputs(input_data_all, 0, input_is_list=input_is_list)
elif max_len_input == 0: elif max_len_input == 0:
process_inputs({}) process_inputs({})
else: else:
for i in range(max_len_input): for i in range(max_len_input):
input_dict = slice_dict(input_data_all, i) input_dict = slice_dict(input_data_all, i)
process_inputs(input_dict, i) process_inputs(input_dict, i)
@ -232,7 +232,7 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
output = merge_result_data(results, obj) output = merge_result_data(results, obj)
else: else:
output = [] output = []
ui = dict() ui = dict()
if len(uis) > 0: if len(uis) > 0:
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()} ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
return output, ui, has_subgraph return output, ui, has_subgraph
@ -556,7 +556,7 @@ def validate_inputs(prompt, item, validated):
received_types = {} received_types = {}
for x in valid_inputs: for x in valid_inputs:
type_input, input_category, extra_info = get_input_info(obj_class, x) type_input, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
assert extra_info is not None assert extra_info is not None
if x not in inputs: if x not in inputs:
if input_category == "required": if input_category == "required":

View File

@ -211,7 +211,9 @@ async def run(server_instance, address='', port=8188, verbose=True, call_on_star
addresses = [] addresses = []
for addr in address.split(","): for addr in address.split(","):
addresses.append((addr, port)) addresses.append((addr, port))
await asyncio.gather(server_instance.start_multi_address(addresses, call_on_start), server_instance.publish_loop()) await asyncio.gather(
server_instance.start_multi_address(addresses, call_on_start, verbose), server_instance.publish_loop()
)
def hijack_progress(server_instance): def hijack_progress(server_instance):

View File

@ -51,7 +51,7 @@ class CLIPTextEncode(ComfyNodeABC):
def INPUT_TYPES(s) -> InputTypeDict: def INPUT_TYPES(s) -> InputTypeDict:
return { return {
"required": { "required": {
"text": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}), "text": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."}) "clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
} }
} }
@ -269,8 +269,8 @@ class VAEDecode:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"samples": ("LATENT", {"tooltip": "The latent to be decoded."}), "samples": ("LATENT", {"tooltip": "The latent to be decoded."}),
"vae": ("VAE", {"tooltip": "The VAE model used for decoding the latent."}) "vae": ("VAE", {"tooltip": "The VAE model used for decoding the latent."})
} }
} }
@ -309,7 +309,7 @@ class VAEDecodeTiled:
temporal_compression = vae.temporal_compression_decode() temporal_compression = vae.temporal_compression_decode()
if temporal_compression is not None: if temporal_compression is not None:
temporal_size = max(2, temporal_size // temporal_compression) temporal_size = max(2, temporal_size // temporal_compression)
temporal_overlap = min(1, temporal_size // 2, temporal_overlap // temporal_compression) temporal_overlap = max(1, min(temporal_size // 2, temporal_overlap // temporal_compression))
else: else:
temporal_size = None temporal_size = None
temporal_overlap = None temporal_overlap = None
@ -550,13 +550,13 @@ class CheckpointLoaderSimple:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}), "ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
} }
} }
RETURN_TYPES = ("MODEL", "CLIP", "VAE") RETURN_TYPES = ("MODEL", "CLIP", "VAE")
OUTPUT_TOOLTIPS = ("The model used for denoising latents.", OUTPUT_TOOLTIPS = ("The model used for denoising latents.",
"The CLIP model used for encoding text prompts.", "The CLIP model used for encoding text prompts.",
"The VAE model used for encoding and decoding images to and from latent space.") "The VAE model used for encoding and decoding images to and from latent space.")
FUNCTION = "load_checkpoint" FUNCTION = "load_checkpoint"
@ -633,7 +633,7 @@ class LoraLoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}), "model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
"clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}), "clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}), "lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
@ -912,16 +912,19 @@ class CLIPLoader:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ), return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart"], ), "type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
}} }}
RETURN_TYPES = ("CLIP",) RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip" FUNCTION = "load_clip"
CATEGORY = "advanced/loaders" CATEGORY = "advanced/loaders"
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5" DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 / clip-g / clip-l\nstable_audio: t5\nmochi: t5\ncosmos: old t5 xxl"
def load_clip(self, clip_name, type="stable_diffusion"): def load_clip(self, clip_name, type="stable_diffusion", device="default"):
if type == "stable_cascade": if type == "stable_cascade":
clip_type = comfy.sd.CLIPType.STABLE_CASCADE clip_type = comfy.sd.CLIPType.STABLE_CASCADE
elif type == "sd3": elif type == "sd3":
@ -937,8 +940,12 @@ class CLIPLoader:
else: else:
clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION clip_type = comfy.sd.CLIPType.STABLE_DIFFUSION
model_options = {}
if device == "cpu":
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name) clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
return (clip,) return (clip,)
class DualCLIPLoader: class DualCLIPLoader:
@ -947,6 +954,9 @@ class DualCLIPLoader:
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ), return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ), "clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
"type": (["sdxl", "sd3", "flux", "hunyuan_video"], ), "type": (["sdxl", "sd3", "flux", "hunyuan_video"], ),
},
"optional": {
"device": (["default", "cpu"], {"advanced": True}),
}} }}
RETURN_TYPES = ("CLIP",) RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip" FUNCTION = "load_clip"
@ -955,7 +965,7 @@ class DualCLIPLoader:
DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5" DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5"
def load_clip(self, clip_name1, clip_name2, type): def load_clip(self, clip_name1, clip_name2, type, device="default"):
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1) clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2) clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
if type == "sdxl": if type == "sdxl":
@ -967,7 +977,11 @@ class DualCLIPLoader:
elif type == "hunyuan_video": elif type == "hunyuan_video":
clip_type = comfy.sd.CLIPType.HUNYUAN_VIDEO clip_type = comfy.sd.CLIPType.HUNYUAN_VIDEO
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type) model_options = {}
if device == "cpu":
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
return (clip,) return (clip,)
class CLIPVisionLoader: class CLIPVisionLoader:
@ -1162,7 +1176,7 @@ class EmptyLatentImage:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
return { return {
"required": { "required": {
"width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The width of the latent images in pixels."}), "width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The width of the latent images in pixels."}),
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The height of the latent images in pixels."}), "height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The height of the latent images in pixels."}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}) "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."})
@ -2213,6 +2227,7 @@ def init_builtin_extra_nodes():
"nodes_lt.py", "nodes_lt.py",
"nodes_hooks.py", "nodes_hooks.py",
"nodes_load_3d.py", "nodes_load_3d.py",
"nodes_cosmos.py",
] ]
import_failed = [] import_failed = []

View File

@ -4,8 +4,9 @@ lint.ignore = ["ALL"]
# Enable specific rules # Enable specific rules
lint.select = [ lint.select = [
"S307", # suspicious-eval-usage "S307", # suspicious-eval-usage
"T201", # print-usage "S102", # exec
"W293", "T", # print-usage
"W",
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names. # The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f # See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
"F", "F",

View File

@ -807,7 +807,7 @@ class PromptServer():
async def start(self, address, port, verbose=True, call_on_start=None): async def start(self, address, port, verbose=True, call_on_start=None):
await self.start_multi_address([(address, port)], call_on_start=call_on_start) await self.start_multi_address([(address, port)], call_on_start=call_on_start)
async def start_multi_address(self, addresses, call_on_start=None): async def start_multi_address(self, addresses, call_on_start=None, verbose=True):
runner = web.AppRunner(self.app, access_log=None) runner = web.AppRunner(self.app, access_log=None)
await runner.setup() await runner.setup()
ssl_ctx = None ssl_ctx = None
@ -818,7 +818,8 @@ class PromptServer():
keyfile=args.tls_keyfile) keyfile=args.tls_keyfile)
scheme = "https" scheme = "https"
logging.info("Starting server\n") if verbose:
logging.info("Starting server\n")
for addr in addresses: for addr in addresses:
address = addr[0] address = addr[0]
port = addr[1] port = addr[1]
@ -834,7 +835,8 @@ class PromptServer():
else: else:
address_print = address address_print = address
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address_print, port)) if verbose:
logging.info("To see the GUI go to: {}://{}:{}".format(scheme, address_print, port))
if call_on_start is not None: if call_on_start is not None:
call_on_start(scheme, self.address, self.port) call_on_start(scheme, self.address, self.port)

View File

@ -95,4 +95,4 @@ def test_get_save_image_path(temp_dir):
assert filename == "test" assert filename == "test"
assert counter == 1 assert counter == 1
assert subfolder == "" assert subfolder == ""
assert filename_prefix == "test" assert filename_prefix == "test"

View File

@ -6,8 +6,8 @@ from folder_paths import filter_files_content_types
@pytest.fixture(scope="module") @pytest.fixture(scope="module")
def file_extensions(): def file_extensions():
return { return {
'image': ['gif', 'heif', 'ico', 'jpeg', 'jpg', 'png', 'pnm', 'ppm', 'svg', 'tiff', 'webp', 'xbm', 'xpm'], 'image': ['gif', 'heif', 'ico', 'jpeg', 'jpg', 'png', 'pnm', 'ppm', 'svg', 'tiff', 'webp', 'xbm', 'xpm'],
'audio': ['aif', 'aifc', 'aiff', 'au', 'flac', 'm4a', 'mp2', 'mp3', 'ogg', 'snd', 'wav'], 'audio': ['aif', 'aifc', 'aiff', 'au', 'flac', 'm4a', 'mp2', 'mp3', 'ogg', 'snd', 'wav'],
'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv'] 'video': ['avi', 'm2v', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ogv', 'qt', 'webm', 'wmv']
} }
@ -49,4 +49,4 @@ def test_handles_no_extension():
def test_handles_no_files(): def test_handles_no_files():
files = [] files = []
assert filter_files_content_types(files, ["image", "audio", "video"]) == [] assert filter_files_content_types(files, ["image", "audio", "video"]) == []

View File

@ -57,8 +57,8 @@ def mock_yaml_safe_load(mock_yaml_content):
def test_load_extra_model_paths_expands_userpath( def test_load_extra_model_paths_expands_userpath(
mock_file, mock_file,
monkeypatch, monkeypatch,
mock_add_model_folder_path, mock_add_model_folder_path,
mock_expanduser, mock_expanduser,
mock_yaml_safe_load, mock_yaml_safe_load,
mock_expanded_home mock_expanded_home
): ):
@ -78,7 +78,7 @@ def test_load_extra_model_paths_expands_userpath(
# Check if add_model_folder_path was called with the correct arguments # Check if add_model_folder_path was called with the correct arguments
for actual_call, expected_call in zip(mock_add_model_folder_path.call_args_list, expected_calls): for actual_call, expected_call in zip(mock_add_model_folder_path.call_args_list, expected_calls):
assert actual_call.args[0] == expected_call[0] assert actual_call.args[0] == expected_call[0]
assert os.path.normpath(actual_call.args[1]) == os.path.normpath(expected_call[1]) # Normalize and check the path to check on multiple OS. assert os.path.normpath(actual_call.args[1]) == os.path.normpath(expected_call[1]) # Normalize and check the path to check on multiple OS.
assert actual_call.args[2] == expected_call[2] assert actual_call.args[2] == expected_call[2]
@ -97,7 +97,7 @@ def test_load_extra_model_paths_expands_appdata(
yaml_config_with_appdata, yaml_config_with_appdata,
mock_yaml_content_appdata mock_yaml_content_appdata
): ):
# Set the mock_file to return yaml with appdata as a variable # Set the mock_file to return yaml with appdata as a variable
mock_file.return_value.read.return_value = yaml_config_with_appdata mock_file.return_value.read.return_value = yaml_config_with_appdata
# Attach mocks # Attach mocks

View File

@ -32,7 +32,7 @@ class TestCompareImageMetrics:
@fixture(scope="class") @fixture(scope="class")
def test_file_names(self, args_pytest): def test_file_names(self, args_pytest):
test_dir = args_pytest['test_dir'] test_dir = args_pytest['test_dir']
fnames = self.gather_file_basenames(test_dir) fnames = self.gather_file_basenames(test_dir)
yield fnames yield fnames
del fnames del fnames
@ -84,7 +84,7 @@ class TestCompareImageMetrics:
file_match = self.find_file_match(baseline_file_path, file_paths) file_match = self.find_file_match(baseline_file_path, file_paths)
assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}" assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}"
# For a baseline image file, finds the corresponding file name in test_dir and # For a baseline image file, finds the corresponding file name in test_dir and
# compares the images using the metrics in METRICS # compares the images using the metrics in METRICS
@pytest.mark.parametrize("metric", METRICS.keys()) @pytest.mark.parametrize("metric", METRICS.keys())
def test_pipeline_compare( def test_pipeline_compare(
@ -181,7 +181,7 @@ class TestCompareImageMetrics:
# Find file match # Find file match
# Reorder test_file_names so that the file with matching name is first # Reorder test_file_names so that the file with matching name is first
# This is an optimization because matching file names are more likely # This is an optimization because matching file names are more likely
# to have matching metadata if they were generated with the same script # to have matching metadata if they were generated with the same script
basename = os.path.basename(baseline_file) basename = os.path.basename(baseline_file)
file_path_basenames = [os.path.basename(f) for f in file_paths] file_path_basenames = [os.path.basename(f) for f in file_paths]

View File

@ -40,8 +40,8 @@ class ComfyClient:
def __init__(self): def __init__(self):
self.test_name = "" self.test_name = ""
def connect(self, def connect(self,
listen:str = '127.0.0.1', listen:str = '127.0.0.1',
port:Union[str,int] = 8188, port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4()) client_id: str = str(uuid.uuid4())
): ):
@ -125,7 +125,7 @@ class TestExecution:
def _server(self, args_pytest, request): def _server(self, args_pytest, request):
# Start server # Start server
pargs = [ pargs = [
'python','main.py', 'python','main.py',
'--output-directory', args_pytest["output_dir"], '--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"], '--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]), '--port', str(args_pytest["port"]),

View File

@ -23,7 +23,7 @@ These tests generate and save images through a range of parameters
""" """
class ComfyGraph: class ComfyGraph:
def __init__(self, def __init__(self,
graph: dict, graph: dict,
sampler_nodes: list[str], sampler_nodes: list[str],
): ):
@ -59,8 +59,8 @@ class ComfyGraph:
class ComfyClient: class ComfyClient:
# From examples/websockets_api_example.py # From examples/websockets_api_example.py
def connect(self, def connect(self,
listen:str = '127.0.0.1', listen:str = '127.0.0.1',
port:Union[str,int] = 8188, port:Union[str,int] = 8188,
client_id: str = str(uuid.uuid4()) client_id: str = str(uuid.uuid4())
): ):
@ -152,7 +152,7 @@ class TestInference:
def _server(self, args_pytest): def _server(self, args_pytest):
# Start server # Start server
p = subprocess.Popen([ p = subprocess.Popen([
'python','main.py', 'python','main.py',
'--output-directory', args_pytest["output_dir"], '--output-directory', args_pytest["output_dir"],
'--listen', args_pytest["listen"], '--listen', args_pytest["listen"],
'--port', str(args_pytest["port"]), '--port', str(args_pytest["port"]),

23
web/assets/BaseViewTemplate-BNGF4K22.js generated vendored Normal file
View File

@ -0,0 +1,23 @@
import { d as defineComponent, o as openBlock, f as createElementBlock, J as renderSlot, T as normalizeClass } from "./index-DjNHn37O.js";
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "BaseViewTemplate",
props: {
dark: { type: Boolean, default: false }
},
setup(__props) {
const props = __props;
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", {
class: normalizeClass(["font-sans w-screen h-screen flex items-center justify-center pointer-events-auto overflow-auto", [
props.dark ? "text-neutral-300 bg-neutral-900 dark-theme" : "text-neutral-900 bg-neutral-300"
]])
}, [
renderSlot(_ctx.$slots, "default")
], 2);
};
}
});
export {
_sfc_main as _
};
//# sourceMappingURL=BaseViewTemplate-BNGF4K22.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"DownloadGitView-B3f7KHY3.js","sources":["../../src/views/DownloadGitView.vue"],"sourcesContent":["<template>\n <div\n class=\"font-sans w-screen h-screen mx-0 grid place-items-center justify-center items-center text-neutral-900 bg-neutral-300 pointer-events-auto\"\n >\n <div\n class=\"col-start-1 h-screen row-start-1 place-content-center mx-auto overflow-y-auto\"\n >\n <div\n class=\"max-w-screen-sm flex flex-col gap-8 p-8 bg-[url('/assets/images/Git-Logo-White.svg')] bg-no-repeat bg-right-top bg-origin-padding\"\n >\n <!-- Header -->\n <h1 class=\"mt-24 text-4xl font-bold text-red-500\">\n {{ $t('downloadGit.title') }}\n </h1>\n\n <!-- Message -->\n <div class=\"space-y-4\">\n <p class=\"text-xl\">\n {{ $t('downloadGit.message') }}\n </p>\n <p class=\"text-xl\">\n {{ $t('downloadGit.instructions') }}\n </p>\n <p class=\"text-m\">\n {{ $t('downloadGit.warning') }}\n </p>\n </div>\n\n <!-- Actions -->\n <div class=\"flex gap-4 flex-row-reverse\">\n <Button\n :label=\"$t('downloadGit.gitWebsite')\"\n icon=\"pi pi-external-link\"\n icon-pos=\"right\"\n @click=\"openGitDownloads\"\n severity=\"primary\"\n />\n <Button\n :label=\"$t('downloadGit.skip')\"\n icon=\"pi pi-exclamation-triangle\"\n @click=\"skipGit\"\n severity=\"secondary\"\n />\n </div>\n </div>\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { useRouter } from 'vue-router'\n\nconst openGitDownloads = () => {\n window.open('https://git-scm.com/downloads/', '_blank')\n}\n\nconst skipGit = () => {\n console.warn('pushing')\n const router = useRouter()\n router.push('install')\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;AAqDA,UAAM,mBAAmB,6BAAM;AACtB,aAAA,KAAK,kCAAkC,QAAQ;AAAA,IAAA,GAD/B;AAIzB,UAAM,UAAU,6BAAM;AACpB,cAAQ,KAAK,SAAS;AACtB,YAAM,SAAS;AACf,aAAO,KAAK,SAAS;AAAA,IAAA,GAHP;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

View File

@ -1,15 +1,14 @@
var __defProp = Object.defineProperty; var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, f as openBlock, g as createElementBlock, A as createBaseVNode, a8 as toDisplayString, h as createVNode, z as unref, D as script, bU as useRouter } from "./index-DIU5yZe9.js"; import { d as defineComponent, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, X as toDisplayString, N as createVNode, j as unref, l as script, bW as useRouter } from "./index-DjNHn37O.js";
const _hoisted_1 = { class: "font-sans w-screen h-screen mx-0 grid place-items-center justify-center items-center text-neutral-900 bg-neutral-300 pointer-events-auto" }; import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
const _hoisted_2 = { class: "col-start-1 h-screen row-start-1 place-content-center mx-auto overflow-y-auto" }; const _hoisted_1 = { class: "max-w-screen-sm flex flex-col gap-8 p-8 bg-[url('/assets/images/Git-Logo-White.svg')] bg-no-repeat bg-right-top bg-origin-padding" };
const _hoisted_3 = { class: "max-w-screen-sm flex flex-col gap-8 p-8 bg-[url('/assets/images/Git-Logo-White.svg')] bg-no-repeat bg-right-top bg-origin-padding" }; const _hoisted_2 = { class: "mt-24 text-4xl font-bold text-red-500" };
const _hoisted_4 = { class: "mt-24 text-4xl font-bold text-red-500" }; const _hoisted_3 = { class: "space-y-4" };
const _hoisted_5 = { class: "space-y-4" }; const _hoisted_4 = { class: "text-xl" };
const _hoisted_6 = { class: "text-xl" }; const _hoisted_5 = { class: "text-xl" };
const _hoisted_7 = { class: "text-xl" }; const _hoisted_6 = { class: "text-m" };
const _hoisted_8 = { class: "text-m" }; const _hoisted_7 = { class: "flex gap-4 flex-row-reverse" };
const _hoisted_9 = { class: "flex gap-4 flex-row-reverse" };
const _sfc_main = /* @__PURE__ */ defineComponent({ const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "DownloadGitView", __name: "DownloadGitView",
setup(__props) { setup(__props) {
@ -22,16 +21,16 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
router.push("install"); router.push("install");
}, "skipGit"); }, "skipGit");
return (_ctx, _cache) => { return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [ return openBlock(), createBlock(_sfc_main$1, null, {
createBaseVNode("div", _hoisted_2, [ default: withCtx(() => [
createBaseVNode("div", _hoisted_3, [ createBaseVNode("div", _hoisted_1, [
createBaseVNode("h1", _hoisted_4, toDisplayString(_ctx.$t("downloadGit.title")), 1), createBaseVNode("h1", _hoisted_2, toDisplayString(_ctx.$t("downloadGit.title")), 1),
createBaseVNode("div", _hoisted_5, [ createBaseVNode("div", _hoisted_3, [
createBaseVNode("p", _hoisted_6, toDisplayString(_ctx.$t("downloadGit.message")), 1), createBaseVNode("p", _hoisted_4, toDisplayString(_ctx.$t("downloadGit.message")), 1),
createBaseVNode("p", _hoisted_7, toDisplayString(_ctx.$t("downloadGit.instructions")), 1), createBaseVNode("p", _hoisted_5, toDisplayString(_ctx.$t("downloadGit.instructions")), 1),
createBaseVNode("p", _hoisted_8, toDisplayString(_ctx.$t("downloadGit.warning")), 1) createBaseVNode("p", _hoisted_6, toDisplayString(_ctx.$t("downloadGit.warning")), 1)
]), ]),
createBaseVNode("div", _hoisted_9, [ createBaseVNode("div", _hoisted_7, [
createVNode(unref(script), { createVNode(unref(script), {
label: _ctx.$t("downloadGit.gitWebsite"), label: _ctx.$t("downloadGit.gitWebsite"),
icon: "pi pi-external-link", icon: "pi pi-external-link",
@ -47,12 +46,13 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}, null, 8, ["label"]) }, null, 8, ["label"])
]) ])
]) ])
]) ]),
]); _: 1
});
}; };
} }
}); });
export { export {
_sfc_main as default _sfc_main as default
}; };
//# sourceMappingURL=DownloadGitView-B3f7KHY3.js.map //# sourceMappingURL=DownloadGitView-DeC7MBzG.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"ExtensionPanel-ByeZ01RF.js","sources":["../../src/components/dialog/content/setting/ExtensionPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Extension\" class=\"extension-panel\">\n <template #header>\n <SearchBox\n v-model=\"filters['global'].value\"\n :placeholder=\"$t('g.searchExtensions') + '...'\"\n />\n <Message v-if=\"hasChanges\" severity=\"info\" pt:text=\"w-full\">\n <ul>\n <li v-for=\"ext in changedExtensions\" :key=\"ext.name\">\n <span>\n {{ extensionStore.isExtensionEnabled(ext.name) ? '[-]' : '[+]' }}\n </span>\n {{ ext.name }}\n </li>\n </ul>\n <div class=\"flex justify-end\">\n <Button\n :label=\"$t('g.reloadToApplyChanges')\"\n @click=\"applyChanges\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n </template>\n <DataTable\n :value=\"extensionStore.extensions\"\n stripedRows\n size=\"small\"\n :filters=\"filters\"\n >\n <Column field=\"name\" :header=\"$t('g.extensionName')\" sortable></Column>\n <Column\n :pt=\"{\n bodyCell: 'flex items-center justify-end'\n }\"\n >\n <template #body=\"slotProps\">\n <ToggleSwitch\n v-model=\"editingEnabledExtensions[slotProps.data.name]\"\n @change=\"updateExtensionStatus\"\n />\n </template>\n </Column>\n </DataTable>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport { ref, computed, onMounted } from 'vue'\nimport { useExtensionStore } from '@/stores/extensionStore'\nimport { useSettingStore } from '@/stores/settingStore'\nimport DataTable from 'primevue/datatable'\nimport Column from 'primevue/column'\nimport ToggleSwitch from 'primevue/toggleswitch'\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport { FilterMatchMode } from '@primevue/core/api'\nimport PanelTemplate from './PanelTemplate.vue'\nimport SearchBox from '@/components/common/SearchBox.vue'\n\nconst filters = ref({\n global: { value: '', matchMode: FilterMatchMode.CONTAINS }\n})\n\nconst extensionStore = useExtensionStore()\nconst settingStore = useSettingStore()\n\nconst editingEnabledExtensions = ref<Record<string, boolean>>({})\n\nonMounted(() => {\n extensionStore.extensions.forEach((ext) => {\n editingEnabledExtensions.value[ext.name] =\n extensionStore.isExtensionEnabled(ext.name)\n })\n})\n\nconst changedExtensions = computed(() => {\n return extensionStore.extensions.filter(\n (ext) =>\n editingEnabledExtensions.value[ext.name] !==\n extensionStore.isExtensionEnabled(ext.name)\n )\n})\n\nconst hasChanges = computed(() => {\n return changedExtensions.value.length > 0\n})\n\nconst updateExtensionStatus = () => {\n const editingDisabledExtensionNames = Object.entries(\n editingEnabledExtensions.value\n )\n .filter(([_, enabled]) => !enabled)\n .map(([name]) => name)\n\n settingStore.set('Comfy.Extension.Disabled', [\n ...extensionStore.inactiveDisabledExtensionNames,\n ...editingDisabledExtensionNames\n ])\n}\n\nconst applyChanges = () => {\n // Refresh the page to apply changes\n window.location.reload()\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;AA8DA,UAAM,UAAU,IAAI;AAAA,MAClB,QAAQ,EAAE,OAAO,IAAI,WAAW,gBAAgB,SAAS;AAAA,IAAA,CAC1D;AAED,UAAM,iBAAiB;AACvB,UAAM,eAAe;AAEf,UAAA,2BAA2B,IAA6B,CAAA,CAAE;AAEhE,cAAU,MAAM;AACC,qBAAA,WAAW,QAAQ,CAAC,QAAQ;AACzC,iCAAyB,MAAM,IAAI,IAAI,IACrC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA,CAC7C;AAAA,IAAA,CACF;AAEK,UAAA,oBAAoB,SAAS,MAAM;AACvC,aAAO,eAAe,WAAW;AAAA,QAC/B,CAAC,QACC,yBAAyB,MAAM,IAAI,IAAI,MACvC,eAAe,mBAAmB,IAAI,IAAI;AAAA,MAAA;AAAA,IAC9C,CACD;AAEK,UAAA,aAAa,SAAS,MAAM;AACzB,aAAA,kBAAkB,MAAM,SAAS;AAAA,IAAA,CACzC;AAED,UAAM,wBAAwB,6BAAM;AAClC,YAAM,gCAAgC,OAAO;AAAA,QAC3C,yBAAyB;AAAA,MAExB,EAAA,OAAO,CAAC,CAAC,GAAG,OAAO,MAAM,CAAC,OAAO,EACjC,IAAI,CAAC,CAAC,IAAI,MAAM,IAAI;AAEvB,mBAAa,IAAI,4BAA4B;AAAA,QAC3C,GAAG,eAAe;AAAA,QAClB,GAAG;AAAA,MAAA,CACJ;AAAA,IAAA,GAV2B;AAa9B,UAAM,eAAe,6BAAM;AAEzB,aAAO,SAAS;IAAO,GAFJ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

View File

@ -1,8 +1,9 @@
var __defProp = Object.defineProperty; var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, r as ref, ck as FilterMatchMode, co as useExtensionStore, u as useSettingStore, o as onMounted, q as computed, f as openBlock, x as createBlock, y as withCtx, h as createVNode, cl as SearchBox, z as unref, bW as script, A as createBaseVNode, g as createElementBlock, Q as renderList, a8 as toDisplayString, ay as createTextVNode, P as Fragment, D as script$1, i as createCommentVNode, c5 as script$3, cm as _sfc_main$1 } from "./index-DIU5yZe9.js"; import { d as defineComponent, ab as ref, cn as FilterMatchMode, cs as useExtensionStore, a as useSettingStore, m as onMounted, c as computed, o as openBlock, k as createBlock, M as withCtx, N as createVNode, co as SearchBox, j as unref, bZ as script, H as createBaseVNode, f as createElementBlock, E as renderList, X as toDisplayString, aE as createTextVNode, F as Fragment, l as script$1, I as createCommentVNode, aI as script$3, bO as script$4, c4 as script$5, cp as _sfc_main$1 } from "./index-DjNHn37O.js";
import { s as script$2, a as script$4 } from "./index-D3u7l7ha.js"; import { s as script$2, a as script$6 } from "./index-B5F0uxTQ.js";
import "./index-d698Brhb.js"; import "./index-B-aVupP5.js";
import "./index-5HFeZax4.js";
const _hoisted_1 = { class: "flex justify-end" }; const _hoisted_1 = { class: "flex justify-end" };
const _sfc_main = /* @__PURE__ */ defineComponent({ const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ExtensionPanel", __name: "ExtensionPanel",
@ -35,9 +36,49 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
...editingDisabledExtensionNames ...editingDisabledExtensionNames
]); ]);
}, "updateExtensionStatus"); }, "updateExtensionStatus");
const enableAllExtensions = /* @__PURE__ */ __name(() => {
extensionStore.extensions.forEach((ext) => {
if (extensionStore.isExtensionReadOnly(ext.name)) return;
editingEnabledExtensions.value[ext.name] = true;
});
updateExtensionStatus();
}, "enableAllExtensions");
const disableAllExtensions = /* @__PURE__ */ __name(() => {
extensionStore.extensions.forEach((ext) => {
if (extensionStore.isExtensionReadOnly(ext.name)) return;
editingEnabledExtensions.value[ext.name] = false;
});
updateExtensionStatus();
}, "disableAllExtensions");
const disableThirdPartyExtensions = /* @__PURE__ */ __name(() => {
extensionStore.extensions.forEach((ext) => {
if (extensionStore.isCoreExtension(ext.name)) return;
editingEnabledExtensions.value[ext.name] = false;
});
updateExtensionStatus();
}, "disableThirdPartyExtensions");
const applyChanges = /* @__PURE__ */ __name(() => { const applyChanges = /* @__PURE__ */ __name(() => {
window.location.reload(); window.location.reload();
}, "applyChanges"); }, "applyChanges");
const menu = ref();
const contextMenuItems = [
{
label: "Enable All",
icon: "pi pi-check",
command: enableAllExtensions
},
{
label: "Disable All",
icon: "pi pi-times",
command: disableAllExtensions
},
{
label: "Disable 3rd Party",
icon: "pi pi-times",
command: disableThirdPartyExtensions,
disabled: !extensionStore.hasThirdPartyExtensions
}
];
return (_ctx, _cache) => { return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { return openBlock(), createBlock(_sfc_main$1, {
value: "Extension", value: "Extension",
@ -52,7 +93,8 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
hasChanges.value ? (openBlock(), createBlock(unref(script), { hasChanges.value ? (openBlock(), createBlock(unref(script), {
key: 0, key: 0,
severity: "info", severity: "info",
"pt:text": "w-full" "pt:text": "w-full",
class: "max-h-96 overflow-y-auto"
}, { }, {
default: withCtx(() => [ default: withCtx(() => [
createBaseVNode("ul", null, [ createBaseVNode("ul", null, [
@ -78,7 +120,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
})) : createCommentVNode("", true) })) : createCommentVNode("", true)
]), ]),
default: withCtx(() => [ default: withCtx(() => [
createVNode(unref(script$4), { createVNode(unref(script$6), {
value: unref(extensionStore).extensions, value: unref(extensionStore).extensions,
stripedRows: "", stripedRows: "",
size: "small", size: "small",
@ -86,19 +128,43 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}, { }, {
default: withCtx(() => [ default: withCtx(() => [
createVNode(unref(script$2), { createVNode(unref(script$2), {
field: "name",
header: _ctx.$t("g.extensionName"), header: _ctx.$t("g.extensionName"),
sortable: "" sortable: "",
}, null, 8, ["header"]), field: "name"
}, {
body: withCtx((slotProps) => [
createTextVNode(toDisplayString(slotProps.data.name) + " ", 1),
unref(extensionStore).isCoreExtension(slotProps.data.name) ? (openBlock(), createBlock(unref(script$3), {
key: 0,
value: "Core"
})) : createCommentVNode("", true)
]),
_: 1
}, 8, ["header"]),
createVNode(unref(script$2), { pt: { createVNode(unref(script$2), { pt: {
headerCell: "flex items-center justify-end",
bodyCell: "flex items-center justify-end" bodyCell: "flex items-center justify-end"
} }, { } }, {
header: withCtx(() => [
createVNode(unref(script$1), {
icon: "pi pi-ellipsis-h",
text: "",
severity: "secondary",
onClick: _cache[1] || (_cache[1] = ($event) => menu.value.show($event))
}),
createVNode(unref(script$4), {
ref_key: "menu",
ref: menu,
model: contextMenuItems
}, null, 512)
]),
body: withCtx((slotProps) => [ body: withCtx((slotProps) => [
createVNode(unref(script$3), { createVNode(unref(script$5), {
disabled: unref(extensionStore).isExtensionReadOnly(slotProps.data.name),
modelValue: editingEnabledExtensions.value[slotProps.data.name], modelValue: editingEnabledExtensions.value[slotProps.data.name],
"onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"), "onUpdate:modelValue": /* @__PURE__ */ __name(($event) => editingEnabledExtensions.value[slotProps.data.name] = $event, "onUpdate:modelValue"),
onChange: updateExtensionStatus onChange: updateExtensionStatus
}, null, 8, ["modelValue", "onUpdate:modelValue"]) }, null, 8, ["disabled", "modelValue", "onUpdate:modelValue"])
]), ]),
_: 1 _: 1
}) })
@ -114,4 +180,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export { export {
_sfc_main as default _sfc_main as default
}; };
//# sourceMappingURL=ExtensionPanel-ByeZ01RF.js.map //# sourceMappingURL=ExtensionPanel-D4Phn0Zr.js.map

File diff suppressed because one or more lines are too long

View File

@ -1,90 +1,31 @@
.group-title-editor.node-title-editor[data-v-8a100d5a] { .comfy-menu-hamburger[data-v-5661bed0] {
pointer-events: auto;
position: fixed;
z-index: 9999; z-index: 9999;
padding: 0.25rem;
}
[data-v-8a100d5a] .editable-text {
width: 100%;
height: 100%;
}
[data-v-8a100d5a] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
} }
.side-bar-button-icon { [data-v-e50caa15] .p-splitter-gutter {
font-size: var(--sidebar-icon-size) !important;
}
.side-bar-button-selected .side-bar-button-icon {
font-size: var(--sidebar-icon-size) !important;
font-weight: bold;
}
.side-bar-button[data-v-caa3ee9c] {
width: var(--sidebar-width);
height: var(--sidebar-width);
border-radius: 0;
}
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-caa3ee9c]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-7851c166] {
display: flex;
flex-direction: column;
align-items: center;
pointer-events: auto;
width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-secondary-bg);
color: var(--fg-color);
box-shadow: var(--bar-shadow);
}
.side-tool-bar-end[data-v-7851c166] {
align-self: flex-end;
margin-top: auto;
}
[data-v-7c3279c1] .p-splitter-gutter {
pointer-events: auto; pointer-events: auto;
} }
[data-v-7c3279c1] .p-splitter-gutter:hover,[data-v-7c3279c1] .p-splitter-gutter[data-p-gutter-resizing='true'] { [data-v-e50caa15] .p-splitter-gutter:hover,[data-v-e50caa15] .p-splitter-gutter[data-p-gutter-resizing='true'] {
transition: background-color 0.2s ease 300ms; transition: background-color 0.2s ease 300ms;
background-color: var(--p-primary-color); background-color: var(--p-primary-color);
} }
.side-bar-panel[data-v-7c3279c1] { .side-bar-panel[data-v-e50caa15] {
background-color: var(--bg-color); background-color: var(--bg-color);
pointer-events: auto; pointer-events: auto;
} }
.bottom-panel[data-v-7c3279c1] { .bottom-panel[data-v-e50caa15] {
background-color: var(--bg-color); background-color: var(--bg-color);
pointer-events: auto; pointer-events: auto;
} }
.splitter-overlay[data-v-7c3279c1] { .splitter-overlay[data-v-e50caa15] {
pointer-events: none; pointer-events: none;
border-style: none; border-style: none;
background-color: transparent; background-color: transparent;
} }
.splitter-overlay-root[data-v-7c3279c1] { .splitter-overlay-root[data-v-e50caa15] {
position: absolute; position: absolute;
top: 0px; top: 0px;
left: 0px; left: 0px;
@ -98,7 +39,50 @@
z-index: 999; z-index: 999;
} }
[data-v-d7cc0bce] .highlight { .p-buttongroup-vertical[data-v-cf40dd39] {
display: flex;
flex-direction: column;
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-cf40dd39] {
margin: 0;
border-radius: 0;
}
.node-tooltip[data-v-46859edf] {
background: var(--comfy-input-bg);
border-radius: 5px;
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4);
color: var(--input-text);
font-family: sans-serif;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
}
.group-title-editor.node-title-editor[data-v-12d3fd12] {
z-index: 9999;
padding: 0.25rem;
}
[data-v-12d3fd12] .editable-text {
width: 100%;
height: 100%;
}
[data-v-12d3fd12] .editable-text input {
width: 100%;
height: 100%;
/* Override the default font size */
font-size: inherit;
}
[data-v-5741c9ae] .highlight {
background-color: var(--p-primary-color); background-color: var(--p-primary-color);
color: var(--p-primary-contrast-color); color: var(--p-primary-contrast-color);
font-weight: bold; font-weight: bold;
@ -125,58 +109,107 @@
align-items: flex-start !important; align-items: flex-start !important;
} }
.node-tooltip[data-v-9ecc8adc] { .side-bar-button-icon {
background: var(--comfy-input-bg); font-size: var(--sidebar-icon-size) !important;
border-radius: 5px; }
box-shadow: 0 0 5px rgba(0, 0, 0, 0.4); .side-bar-button-selected .side-bar-button-icon {
color: var(--input-text); font-size: var(--sidebar-icon-size) !important;
font-family: sans-serif; font-weight: bold;
left: 0;
max-width: 30vw;
padding: 4px 8px;
position: absolute;
top: 0;
transform: translate(5px, calc(-100% - 5px));
white-space: pre-wrap;
z-index: 99999;
} }
.p-buttongroup-vertical[data-v-94481f39] { .side-bar-button[data-v-6ab4daa6] {
display: flex; width: var(--sidebar-width);
flex-direction: column; height: var(--sidebar-width);
border-radius: var(--p-button-border-radius);
overflow: hidden;
border: 1px solid var(--p-panel-border-color);
}
.p-buttongroup-vertical .p-button[data-v-94481f39] {
margin: 0;
border-radius: 0; border-radius: 0;
} }
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-6ab4daa6],
.comfyui-body-left .side-bar-button.side-bar-button-selected[data-v-6ab4daa6]:hover {
border-left: 4px solid var(--p-button-text-primary-color);
}
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-6ab4daa6],
.comfyui-body-right .side-bar-button.side-bar-button-selected[data-v-6ab4daa6]:hover {
border-right: 4px solid var(--p-button-text-primary-color);
}
:root {
--sidebar-width: 64px;
--sidebar-icon-size: 1.5rem;
}
:root .small-sidebar {
--sidebar-width: 40px;
--sidebar-icon-size: 1rem;
}
.side-tool-bar-container[data-v-37d8d7b4] {
display: flex;
flex-direction: column;
align-items: center;
.comfy-menu-hamburger[data-v-962c4073] {
pointer-events: auto; pointer-events: auto;
position: fixed;
z-index: 9999; width: var(--sidebar-width);
height: 100%;
background-color: var(--comfy-menu-secondary-bg);
color: var(--fg-color);
box-shadow: var(--bar-shadow);
}
.side-tool-bar-end[data-v-37d8d7b4] {
align-self: flex-end;
margin-top: auto;
} }
[data-v-4cb762cb] .p-togglebutton::before { [data-v-b9328350] .p-inputtext {
display: none border-top-left-radius: 0;
border-bottom-left-radius: 0;
} }
[data-v-4cb762cb] .p-togglebutton {
position: relative; .comfyui-queue-button[data-v-7f4f551b] .p-splitbutton-dropdown {
flex-shrink: 0; border-top-right-radius: 0;
border-radius: 0px; border-bottom-right-radius: 0;
}
.actionbar[data-v-915e5456] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-915e5456] {
position: static;
border-style: none;
background-color: transparent; background-color: transparent;
padding: 0px padding: 0px;
} }
[data-v-4cb762cb] .p-togglebutton.p-togglebutton-checked { .actionbar.is-dragging[data-v-915e5456] {
border-bottom-width: 2px; -webkit-user-select: none;
border-bottom-color: var(--p-button-text-primary-color) -moz-user-select: none;
user-select: none;
} }
[data-v-4cb762cb] .p-togglebutton-checked .close-button,[data-v-4cb762cb] .p-togglebutton:hover .close-button { [data-v-915e5456] .p-panel-content {
visibility: visible padding: 0.25rem;
} }
.status-indicator[data-v-4cb762cb] { .is-docked[data-v-915e5456] .p-panel-content {
padding: 0px;
}
[data-v-915e5456] .p-panel-header {
display: none;
}
.top-menubar[data-v-6fecd137] .p-menubar-item-link svg {
display: none;
}
[data-v-6fecd137] .p-menubar-submenu.dropdown-direction-up {
top: auto;
bottom: 100%;
flex-direction: column-reverse;
}
.keybinding-tag[data-v-6fecd137] {
background: var(--p-content-hover-background);
border-color: var(--p-content-border-color);
border-style: solid;
}
.status-indicator[data-v-8d011a31] {
position: absolute; position: absolute;
font-weight: 700; font-weight: 700;
font-size: 1.5rem; font-size: 1.5rem;
@ -184,61 +217,32 @@
left: 50%; left: 50%;
transform: translate(-50%, -50%) transform: translate(-50%, -50%)
} }
[data-v-4cb762cb] .p-togglebutton:hover .status-indicator {
[data-v-d485c044] .p-togglebutton::before {
display: none display: none
} }
[data-v-4cb762cb] .p-togglebutton .close-button { [data-v-d485c044] .p-togglebutton {
position: relative;
flex-shrink: 0;
border-radius: 0px;
background-color: transparent;
padding: 0px
}
[data-v-d485c044] .p-togglebutton.p-togglebutton-checked {
border-bottom-width: 2px;
border-bottom-color: var(--p-button-text-primary-color)
}
[data-v-d485c044] .p-togglebutton-checked .close-button,[data-v-d485c044] .p-togglebutton:hover .close-button {
visibility: visible
}
[data-v-d485c044] .p-togglebutton:hover .status-indicator {
display: none
}
[data-v-d485c044] .p-togglebutton .close-button {
visibility: hidden visibility: hidden
} }
.top-menubar[data-v-a2b12676] .p-menubar-item-link svg { .comfyui-menu[data-v-878b63b8] {
display: none;
}
[data-v-a2b12676] .p-menubar-submenu.dropdown-direction-up {
top: auto;
bottom: 100%;
flex-direction: column-reverse;
}
.keybinding-tag[data-v-a2b12676] {
background: var(--p-content-hover-background);
border-color: var(--p-content-border-color);
border-style: solid;
}
[data-v-713442be] .p-inputtext {
border-top-left-radius: 0;
border-bottom-left-radius: 0;
}
.comfyui-queue-button[data-v-d3897845] .p-splitbutton-dropdown {
border-top-right-radius: 0;
border-bottom-right-radius: 0;
}
.actionbar[data-v-542a7001] {
pointer-events: all;
position: fixed;
z-index: 1000;
}
.actionbar.is-docked[data-v-542a7001] {
position: static;
border-style: none;
background-color: transparent;
padding: 0px;
}
.actionbar.is-dragging[data-v-542a7001] {
-webkit-user-select: none;
-moz-user-select: none;
user-select: none;
}
[data-v-542a7001] .p-panel-content {
padding: 0.25rem;
}
[data-v-542a7001] .p-panel-header {
display: none;
}
.comfyui-menu[data-v-d792da31] {
width: 100vw; width: 100vw;
background: var(--comfy-menu-bg); background: var(--comfy-menu-bg);
color: var(--fg-color); color: var(--fg-color);
@ -251,16 +255,16 @@
grid-column: 1/-1; grid-column: 1/-1;
max-height: 90vh; max-height: 90vh;
} }
.comfyui-menu.dropzone[data-v-d792da31] { .comfyui-menu.dropzone[data-v-878b63b8] {
background: var(--p-highlight-background); background: var(--p-highlight-background);
} }
.comfyui-menu.dropzone-active[data-v-d792da31] { .comfyui-menu.dropzone-active[data-v-878b63b8] {
background: var(--p-highlight-background-focus); background: var(--p-highlight-background-focus);
} }
[data-v-d792da31] .p-menubar-item-label { [data-v-878b63b8] .p-menubar-item-label {
line-height: revert; line-height: revert;
} }
.comfyui-logo[data-v-d792da31] { .comfyui-logo[data-v-878b63b8] {
font-size: 1.2em; font-size: 1.2em;
-webkit-user-select: none; -webkit-user-select: none;
-moz-user-select: none; -moz-user-select: none;

File diff suppressed because one or more lines are too long

View File

@ -1,4 +0,0 @@
[data-v-7ef01cf2] .p-steppanel {
background-color: transparent
}

File diff suppressed because one or more lines are too long

79
web/assets/InstallView-CwQdoH-C.css generated vendored Normal file
View File

@ -0,0 +1,79 @@
:root {
--p-tag-gap: 0.5rem;
}
.hover-brighten {
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke;
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
transition-duration: 150ms;
transition-property: filter, box-shadow;
&:hover {
filter: brightness(107%) contrast(105%);
box-shadow: 0 0 0.25rem #ffffff79;
}
}
.p-accordioncontent-content {
border-radius: 0.5rem;
--tw-bg-opacity: 1;
background-color: rgb(23 23 23 / var(--tw-bg-opacity));
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke;
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
transition-duration: 150ms;
}
div.selected {
.gpu-button:not(.selected) {
opacity: 0.5;
}
.gpu-button:not(.selected):hover {
opacity: 1;
}
}
.gpu-button {
margin: 0px;
display: flex;
width: 50%;
cursor: pointer;
flex-direction: column;
align-items: center;
justify-content: space-around;
border-radius: 0.5rem;
background-color: rgb(38 38 38 / var(--tw-bg-opacity));
--tw-bg-opacity: 0.5;
transition-property: color, background-color, border-color, text-decoration-color, fill, stroke;
transition-timing-function: cubic-bezier(0.4, 0, 0.2, 1);
transition-duration: 150ms;
}
.gpu-button:hover {
--tw-bg-opacity: 0.75;
}
.gpu-button {
&.selected {
--tw-bg-opacity: 1;
background-color: rgb(64 64 64 / var(--tw-bg-opacity));
}
&.selected {
--tw-bg-opacity: 0.5;
}
&.selected {
opacity: 1;
}
&.selected:hover {
--tw-bg-opacity: 0.6;
}
}
.disabled {
pointer-events: none;
opacity: 0.4;
}
.p-card-header {
flex-grow: 1;
text-align: center;
}
.p-card-body {
padding-top: 0px;
text-align: center;
}
[data-v-de33872d] .p-steppanel {
background-color: transparent
}

File diff suppressed because one or more lines are too long

View File

@ -1,8 +0,0 @@
[data-v-c20ad403] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-c20ad403] .p-datatable-row-selected .actions,[data-v-c20ad403] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

File diff suppressed because one or more lines are too long

View File

@ -1,8 +1,10 @@
var __defProp = Object.defineProperty; var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, q as computed, f as openBlock, g as createElementBlock, P as Fragment, Q as renderList, h as createVNode, y as withCtx, ay as createTextVNode, a8 as toDisplayString, z as unref, aC as script, i as createCommentVNode, r as ref, ck as FilterMatchMode, O as useKeybindingStore, F as useCommandStore, I as useI18n, aS as normalizeI18nKey, aL as watchEffect, bn as useToast, t as resolveDirective, x as createBlock, cl as SearchBox, A as createBaseVNode, D as script$2, aq as script$4, br as withModifiers, bW as script$5, aI as script$6, v as withDirectives, cm as _sfc_main$2, R as pushScopeId, U as popScopeId, ce as KeyComboImpl, cn as KeybindingImpl, _ as _export_sfc } from "./index-DIU5yZe9.js"; import { d as defineComponent, c as computed, o as openBlock, f as createElementBlock, F as Fragment, E as renderList, N as createVNode, M as withCtx, aE as createTextVNode, X as toDisplayString, j as unref, aI as script, I as createCommentVNode, ab as ref, cn as FilterMatchMode, a$ as useKeybindingStore, a2 as useCommandStore, a1 as useI18n, af as normalizeI18nKey, w as watchEffect, bs as useToast, r as resolveDirective, k as createBlock, co as SearchBox, H as createBaseVNode, l as script$2, av as script$4, bM as withModifiers, bZ as script$5, aP as script$6, i as withDirectives, cp as _sfc_main$2, aL as pushScopeId, aM as popScopeId, cq as KeyComboImpl, cr as KeybindingImpl, _ as _export_sfc } from "./index-DjNHn37O.js";
import { s as script$1, a as script$3 } from "./index-D3u7l7ha.js"; import { s as script$1, a as script$3 } from "./index-B5F0uxTQ.js";
import "./index-d698Brhb.js"; import { u as useKeybindingService } from "./keybindingService-Bx7YdkXn.js";
import "./index-B-aVupP5.js";
import "./index-5HFeZax4.js";
const _hoisted_1$1 = { const _hoisted_1$1 = {
key: 0, key: 0,
class: "px-2" class: "px-2"
@ -35,7 +37,7 @@ const _sfc_main$1 = /* @__PURE__ */ defineComponent({
}; };
} }
}); });
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-c20ad403"), n = n(), popScopeId(), n), "_withScopeId"); const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-2554ab36"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "actions invisible flex flex-row" }; const _hoisted_1 = { class: "actions invisible flex flex-row" };
const _hoisted_2 = ["title"]; const _hoisted_2 = ["title"];
const _hoisted_3 = { key: 1 }; const _hoisted_3 = { key: 1 };
@ -46,6 +48,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
global: { value: "", matchMode: FilterMatchMode.CONTAINS } global: { value: "", matchMode: FilterMatchMode.CONTAINS }
}); });
const keybindingStore = useKeybindingStore(); const keybindingStore = useKeybindingStore();
const keybindingService = useKeybindingService();
const commandStore = useCommandStore(); const commandStore = useCommandStore();
const { t } = useI18n(); const { t } = useI18n();
const commandsData = computed(() => { const commandsData = computed(() => {
@ -90,7 +93,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
function removeKeybinding(commandData) { function removeKeybinding(commandData) {
if (commandData.keybinding) { if (commandData.keybinding) {
keybindingStore.unsetKeybinding(commandData.keybinding); keybindingStore.unsetKeybinding(commandData.keybinding);
keybindingStore.persistUserKeybindings(); keybindingService.persistUserKeybindings();
} }
} }
__name(removeKeybinding, "removeKeybinding"); __name(removeKeybinding, "removeKeybinding");
@ -114,7 +117,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}) })
); );
if (updated) { if (updated) {
keybindingStore.persistUserKeybindings(); keybindingService.persistUserKeybindings();
} }
} }
cancelEdit(); cancelEdit();
@ -123,7 +126,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
const toast = useToast(); const toast = useToast();
async function resetKeybindings() { async function resetKeybindings() {
keybindingStore.resetKeybindings(); keybindingStore.resetKeybindings();
await keybindingStore.persistUserKeybindings(); await keybindingService.persistUserKeybindings();
toast.add({ toast.add({
severity: "info", severity: "info",
summary: "Info", summary: "Info",
@ -182,7 +185,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}), }),
createVNode(unref(script$1), { createVNode(unref(script$1), {
field: "id", field: "id",
header: "Command ID", header: _ctx.$t("g.command"),
sortable: "", sortable: "",
class: "max-w-64 2xl:max-w-full" class: "max-w-64 2xl:max-w-full"
}, { }, {
@ -193,10 +196,10 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}, toDisplayString(slotProps.data.label), 9, _hoisted_2) }, toDisplayString(slotProps.data.label), 9, _hoisted_2)
]), ]),
_: 1 _: 1
}), }, 8, ["header"]),
createVNode(unref(script$1), { createVNode(unref(script$1), {
field: "keybinding", field: "keybinding",
header: "Keybinding" header: _ctx.$t("g.keybinding")
}, { }, {
body: withCtx((slotProps) => [ body: withCtx((slotProps) => [
slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, { slotProps.data.keybinding ? (openBlock(), createBlock(_sfc_main$1, {
@ -206,7 +209,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_3, "-")) }, null, 8, ["keyCombo", "isModified"])) : (openBlock(), createElementBlock("span", _hoisted_3, "-"))
]), ]),
_: 1 _: 1
}) }, 8, ["header"])
]), ]),
_: 1 _: 1
}, 8, ["value", "selection", "filters"]), }, 8, ["value", "selection", "filters"]),
@ -274,8 +277,8 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
}; };
} }
}); });
const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-c20ad403"]]); const KeybindingPanel = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-2554ab36"]]);
export { export {
KeybindingPanel as default KeybindingPanel as default
}; };
//# sourceMappingURL=KeybindingPanel-DC2AxNNa.js.map //# sourceMappingURL=KeybindingPanel-Dc3C4lG1.js.map

8
web/assets/KeybindingPanel-DvrUYZ4S.css generated vendored Normal file
View File

@ -0,0 +1,8 @@
[data-v-2554ab36] .p-datatable-tbody > tr > td {
padding: 0.25rem;
min-height: 2rem
}
[data-v-2554ab36] .p-datatable-row-selected .actions,[data-v-2554ab36] .p-datatable-selectable-row:hover .actions {
visibility: visible
}

7
web/assets/ManualConfigurationView-B6ecEClB.css generated vendored Normal file
View File

@ -0,0 +1,7 @@
:root {
--p-tag-gap: 0.5rem;
}
.comfy-installer {
margin-top: max(1rem, max(0px, calc((100vh - 42rem) * 0.5)));
}

75
web/assets/ManualConfigurationView-Bi_qHE-n.js generated vendored Normal file
View File

@ -0,0 +1,75 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, a1 as useI18n, ab as ref, m as onMounted, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, X as toDisplayString, N as createVNode, j as unref, aI as script, l as script$2, c0 as electronAPI } from "./index-DjNHn37O.js";
import { s as script$1 } from "./index-jXPKy3pP.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
import "./index-5HFeZax4.js";
const _hoisted_1 = { class: "comfy-installer grow flex flex-col gap-4 text-neutral-300 max-w-110" };
const _hoisted_2 = { class: "text-2xl font-semibold text-neutral-100" };
const _hoisted_3 = { class: "m-1 text-neutral-300" };
const _hoisted_4 = { class: "ml-2" };
const _hoisted_5 = { class: "m-1 mb-4" };
const _hoisted_6 = { class: "m-0" };
const _hoisted_7 = { class: "m-1" };
const _hoisted_8 = { class: "font-mono" };
const _hoisted_9 = { class: "m-1" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ManualConfigurationView",
setup(__props) {
const { t } = useI18n();
const electron = electronAPI();
const basePath = ref(null);
const sep = ref("/");
const restartApp = /* @__PURE__ */ __name((message) => electron.restartApp(message), "restartApp");
onMounted(async () => {
basePath.value = await electron.getBasePath();
if (basePath.value.indexOf("/") === -1) sep.value = "\\";
});
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { dark: "" }, {
default: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
createBaseVNode("h2", _hoisted_2, toDisplayString(_ctx.$t("install.manualConfiguration.title")), 1),
createBaseVNode("p", _hoisted_3, [
createVNode(unref(script), {
icon: "pi pi-exclamation-triangle",
severity: "warn",
value: unref(t)("icon.exclamation-triangle")
}, null, 8, ["value"]),
createBaseVNode("strong", _hoisted_4, toDisplayString(_ctx.$t("install.gpuSelection.customComfyNeedsPython")), 1)
]),
createBaseVNode("div", null, [
createBaseVNode("p", _hoisted_5, toDisplayString(_ctx.$t("install.manualConfiguration.requirements")) + ": ", 1),
createBaseVNode("ul", _hoisted_6, [
createBaseVNode("li", null, toDisplayString(_ctx.$t("install.gpuSelection.customManualVenv")), 1),
createBaseVNode("li", null, toDisplayString(_ctx.$t("install.gpuSelection.customInstallRequirements")), 1)
])
]),
createBaseVNode("p", _hoisted_7, toDisplayString(_ctx.$t("install.manualConfiguration.createVenv")) + ":", 1),
createVNode(unref(script$1), {
header: unref(t)("install.manualConfiguration.virtualEnvironmentPath")
}, {
default: withCtx(() => [
createBaseVNode("span", _hoisted_8, toDisplayString(`${basePath.value}${sep.value}.venv${sep.value}`), 1)
]),
_: 1
}, 8, ["header"]),
createBaseVNode("p", _hoisted_9, toDisplayString(_ctx.$t("install.manualConfiguration.restartWhenFinished")), 1),
createVNode(unref(script$2), {
class: "place-self-end",
label: unref(t)("menuLabels.Restart"),
severity: "warn",
icon: "pi pi-refresh",
onClick: _cache[0] || (_cache[0] = ($event) => restartApp("Manual configuration complete"))
}, null, 8, ["label"])
])
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=ManualConfigurationView-Bi_qHE-n.js.map

View File

@ -1,82 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, bU as useRouter, t as resolveDirective, f as openBlock, g as createElementBlock, A as createBaseVNode, a8 as toDisplayString, h as createVNode, z as unref, D as script, v as withDirectives } from "./index-DIU5yZe9.js";
const _imports_0 = "" + new URL("images/sad_girl.png", import.meta.url).href;
const _hoisted_1 = { class: "font-sans w-screen h-screen flex items-center m-0 text-neutral-900 bg-neutral-300 pointer-events-auto" };
const _hoisted_2 = { class: "flex-grow flex items-center justify-center" };
const _hoisted_3 = { class: "flex flex-col gap-8 p-8" };
const _hoisted_4 = { class: "text-4xl font-bold text-red-500" };
const _hoisted_5 = { class: "space-y-4" };
const _hoisted_6 = { class: "text-xl" };
const _hoisted_7 = { class: "list-disc list-inside space-y-1 text-neutral-800" };
const _hoisted_8 = { class: "flex gap-4" };
const _hoisted_9 = /* @__PURE__ */ createBaseVNode("div", { class: "h-screen flex-grow-0" }, [
/* @__PURE__ */ createBaseVNode("img", {
src: _imports_0,
alt: "Sad girl illustration",
class: "h-full object-cover"
})
], -1);
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "NotSupportedView",
setup(__props) {
const openDocs = /* @__PURE__ */ __name(() => {
window.open(
"https://github.com/Comfy-Org/desktop#currently-supported-platforms",
"_blank"
);
}, "openDocs");
const reportIssue = /* @__PURE__ */ __name(() => {
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
}, "reportIssue");
const router = useRouter();
const continueToInstall = /* @__PURE__ */ __name(() => {
router.push("/install");
}, "continueToInstall");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("div", _hoisted_2, [
createBaseVNode("div", _hoisted_3, [
createBaseVNode("h1", _hoisted_4, toDisplayString(_ctx.$t("notSupported.title")), 1),
createBaseVNode("div", _hoisted_5, [
createBaseVNode("p", _hoisted_6, toDisplayString(_ctx.$t("notSupported.message")), 1),
createBaseVNode("ul", _hoisted_7, [
createBaseVNode("li", null, toDisplayString(_ctx.$t("notSupported.supportedDevices.macos")), 1),
createBaseVNode("li", null, toDisplayString(_ctx.$t("notSupported.supportedDevices.windows")), 1)
])
]),
createBaseVNode("div", _hoisted_8, [
createVNode(unref(script), {
label: _ctx.$t("notSupported.learnMore"),
icon: "pi pi-github",
onClick: openDocs,
severity: "secondary"
}, null, 8, ["label"]),
createVNode(unref(script), {
label: _ctx.$t("notSupported.reportIssue"),
icon: "pi pi-flag",
onClick: reportIssue,
severity: "secondary"
}, null, 8, ["label"]),
withDirectives(createVNode(unref(script), {
label: _ctx.$t("notSupported.continue"),
icon: "pi pi-arrow-right",
iconPos: "right",
onClick: continueToInstall,
severity: "danger"
}, null, 8, ["label"]), [
[_directive_tooltip, _ctx.$t("notSupported.continueTooltip")]
])
])
])
]),
_hoisted_9
]);
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=NotSupportedView-C8O1Ed5c.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"NotSupportedView-C8O1Ed5c.js","sources":["../../../../../../../assets/images/sad_girl.png","../../src/views/NotSupportedView.vue"],"sourcesContent":["export default \"__VITE_PUBLIC_ASSET__b82952e7__\"","<template>\n <div\n class=\"font-sans w-screen h-screen flex items-center m-0 text-neutral-900 bg-neutral-300 pointer-events-auto\"\n >\n <div class=\"flex-grow flex items-center justify-center\">\n <div class=\"flex flex-col gap-8 p-8\">\n <!-- Header -->\n <h1 class=\"text-4xl font-bold text-red-500\">\n {{ $t('notSupported.title') }}\n </h1>\n\n <!-- Message -->\n <div class=\"space-y-4\">\n <p class=\"text-xl\">\n {{ $t('notSupported.message') }}\n </p>\n <ul class=\"list-disc list-inside space-y-1 text-neutral-800\">\n <li>{{ $t('notSupported.supportedDevices.macos') }}</li>\n <li>{{ $t('notSupported.supportedDevices.windows') }}</li>\n </ul>\n </div>\n\n <!-- Actions -->\n <div class=\"flex gap-4\">\n <Button\n :label=\"$t('notSupported.learnMore')\"\n icon=\"pi pi-github\"\n @click=\"openDocs\"\n severity=\"secondary\"\n />\n <Button\n :label=\"$t('notSupported.reportIssue')\"\n icon=\"pi pi-flag\"\n @click=\"reportIssue\"\n severity=\"secondary\"\n />\n <Button\n :label=\"$t('notSupported.continue')\"\n icon=\"pi pi-arrow-right\"\n iconPos=\"right\"\n @click=\"continueToInstall\"\n severity=\"danger\"\n v-tooltip=\"$t('notSupported.continueTooltip')\"\n />\n </div>\n </div>\n </div>\n\n <!-- Right side image -->\n <div class=\"h-screen flex-grow-0\">\n <img\n src=\"/assets/images/sad_girl.png\"\n alt=\"Sad girl illustration\"\n class=\"h-full object-cover\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { useRouter } from 'vue-router'\n\nconst openDocs = () => {\n window.open(\n 'https://github.com/Comfy-Org/desktop#currently-supported-platforms',\n '_blank'\n )\n}\n\nconst reportIssue = () => {\n window.open('https://forum.comfy.org/c/v1-feedback/', '_blank')\n}\n\nconst router = useRouter()\nconst continueToInstall = () => {\n router.push('/install')\n}\n</script>\n"],"names":[],"mappings":";;;AAAA,MAAe,aAAA,KAAA,IAAA,IAAA,uBAAA,YAAA,GAAA,EAAA;;;;;;;;;;;;;;;;;;;AC+Df,UAAM,WAAW,6BAAM;AACd,aAAA;AAAA,QACL;AAAA,QACA;AAAA,MAAA;AAAA,IACF,GAJe;AAOjB,UAAM,cAAc,6BAAM;AACjB,aAAA,KAAK,0CAA0C,QAAQ;AAAA,IAAA,GAD5C;AAIpB,UAAM,SAAS;AACf,UAAM,oBAAoB,6BAAM;AAC9B,aAAO,KAAK,UAAU;AAAA,IAAA,GADE;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

86
web/assets/NotSupportedView-Drz3x2d-.js generated vendored Normal file
View File

@ -0,0 +1,86 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, bW as useRouter, r as resolveDirective, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, X as toDisplayString, N as createVNode, j as unref, l as script, i as withDirectives } from "./index-DjNHn37O.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
const _imports_0 = "" + new URL("images/sad_girl.png", import.meta.url).href;
const _hoisted_1 = { class: "sad-container" };
const _hoisted_2 = /* @__PURE__ */ createBaseVNode("img", {
class: "sad-girl",
src: _imports_0,
alt: "Sad girl illustration"
}, null, -1);
const _hoisted_3 = { class: "no-drag sad-text flex items-center" };
const _hoisted_4 = { class: "flex flex-col gap-8 p-8 min-w-110" };
const _hoisted_5 = { class: "text-4xl font-bold text-red-500" };
const _hoisted_6 = { class: "space-y-4" };
const _hoisted_7 = { class: "text-xl" };
const _hoisted_8 = { class: "list-disc list-inside space-y-1 text-neutral-800" };
const _hoisted_9 = { class: "flex gap-4" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "NotSupportedView",
setup(__props) {
const openDocs = /* @__PURE__ */ __name(() => {
window.open(
"https://github.com/Comfy-Org/desktop#currently-supported-platforms",
"_blank"
);
}, "openDocs");
const reportIssue = /* @__PURE__ */ __name(() => {
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
}, "reportIssue");
const router = useRouter();
const continueToInstall = /* @__PURE__ */ __name(() => {
router.push("/install");
}, "continueToInstall");
return (_ctx, _cache) => {
const _directive_tooltip = resolveDirective("tooltip");
return openBlock(), createBlock(_sfc_main$1, null, {
default: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
_hoisted_2,
createBaseVNode("div", _hoisted_3, [
createBaseVNode("div", _hoisted_4, [
createBaseVNode("h1", _hoisted_5, toDisplayString(_ctx.$t("notSupported.title")), 1),
createBaseVNode("div", _hoisted_6, [
createBaseVNode("p", _hoisted_7, toDisplayString(_ctx.$t("notSupported.message")), 1),
createBaseVNode("ul", _hoisted_8, [
createBaseVNode("li", null, toDisplayString(_ctx.$t("notSupported.supportedDevices.macos")), 1),
createBaseVNode("li", null, toDisplayString(_ctx.$t("notSupported.supportedDevices.windows")), 1)
])
]),
createBaseVNode("div", _hoisted_9, [
createVNode(unref(script), {
label: _ctx.$t("notSupported.learnMore"),
icon: "pi pi-github",
onClick: openDocs,
severity: "secondary"
}, null, 8, ["label"]),
createVNode(unref(script), {
label: _ctx.$t("notSupported.reportIssue"),
icon: "pi pi-flag",
onClick: reportIssue,
severity: "secondary"
}, null, 8, ["label"]),
withDirectives(createVNode(unref(script), {
label: _ctx.$t("notSupported.continue"),
icon: "pi pi-arrow-right",
iconPos: "right",
onClick: continueToInstall,
severity: "danger"
}, null, 8, ["label"]), [
[_directive_tooltip, _ctx.$t("notSupported.continueTooltip")]
])
])
])
])
])
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=NotSupportedView-Drz3x2d-.js.map

17
web/assets/NotSupportedView-bFzHmqNj.css generated vendored Normal file
View File

@ -0,0 +1,17 @@
.sad-container {
display: grid;
align-items: center;
justify-content: space-evenly;
grid-template-columns: 25rem 1fr;
& > * {
grid-row: 1;
}
}
.sad-text {
grid-column: 1/3;
}
.sad-girl {
grid-column: 2/3;
width: min(75vw, 100vh);
}

View File

@ -1,7 +1,7 @@
var __defProp = Object.defineProperty; var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { A as createBaseVNode, f as openBlock, g as createElementBlock, aZ as markRaw, a as defineComponent, u as useSettingStore, aK as storeToRefs, w as watch, cL as useCopyToClipboard, I as useI18n, x as createBlock, y as withCtx, z as unref, bW as script, a8 as toDisplayString, Q as renderList, P as Fragment, h as createVNode, D as script$1, i as createCommentVNode, bN as script$2, cM as FormItem, cm as _sfc_main$1, bZ as electronAPI } from "./index-DIU5yZe9.js"; import { H as createBaseVNode, o as openBlock, f as createElementBlock, Z as markRaw, d as defineComponent, a as useSettingStore, aS as storeToRefs, a5 as watch, cO as useCopyToClipboard, a1 as useI18n, k as createBlock, M as withCtx, j as unref, bZ as script, X as toDisplayString, E as renderList, F as Fragment, N as createVNode, l as script$1, I as createCommentVNode, bQ as script$2, cP as FormItem, cp as _sfc_main$1, c0 as electronAPI } from "./index-DjNHn37O.js";
import { u as useServerConfigStore } from "./serverConfigStore-DYv7_Nld.js"; import { u as useServerConfigStore } from "./serverConfigStore-CvyKFVuP.js";
const _hoisted_1$1 = { const _hoisted_1$1 = {
viewBox: "0 0 24 24", viewBox: "0 0 24 24",
width: "1.2em", width: "1.2em",
@ -131,7 +131,7 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
(openBlock(true), createElementBlock(Fragment, null, renderList(items, (item) => { (openBlock(true), createElementBlock(Fragment, null, renderList(items, (item) => {
return openBlock(), createElementBlock("div", { return openBlock(), createElementBlock("div", {
key: item.name, key: item.name,
class: "flex items-center mb-4" class: "mb-4"
}, [ }, [
createVNode(FormItem, { createVNode(FormItem, {
item: translateItem(item), item: translateItem(item),
@ -155,4 +155,4 @@ const _sfc_main = /* @__PURE__ */ defineComponent({
export { export {
_sfc_main as default _sfc_main as default
}; };
//# sourceMappingURL=ServerConfigPanel-CvXC1Xmx.js.map //# sourceMappingURL=ServerConfigPanel-Be4StJmv.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"ServerConfigPanel-CvXC1Xmx.js","sources":["../../src/components/dialog/content/setting/ServerConfigPanel.vue"],"sourcesContent":["<template>\n <PanelTemplate value=\"Server-Config\" class=\"server-config-panel\">\n <template #header>\n <div class=\"flex flex-col gap-2\">\n <Message\n v-if=\"modifiedConfigs.length > 0\"\n severity=\"info\"\n pt:text=\"w-full\"\n >\n <p>\n {{ $t('serverConfig.modifiedConfigs') }}\n </p>\n <ul>\n <li v-for=\"config in modifiedConfigs\" :key=\"config.id\">\n {{ config.name }}: {{ config.initialValue }} → {{ config.value }}\n </li>\n </ul>\n <div class=\"flex justify-end gap-2\">\n <Button\n :label=\"$t('serverConfig.revertChanges')\"\n @click=\"revertChanges\"\n outlined\n />\n <Button\n :label=\"$t('serverConfig.restart')\"\n @click=\"restartApp\"\n outlined\n severity=\"danger\"\n />\n </div>\n </Message>\n <Message v-if=\"commandLineArgs\" severity=\"secondary\" pt:text=\"w-full\">\n <template #icon>\n <i-lucide:terminal class=\"text-xl font-bold\" />\n </template>\n <div class=\"flex items-center justify-between\">\n <p>{{ commandLineArgs }}</p>\n <Button\n icon=\"pi pi-clipboard\"\n @click=\"copyCommandLineArgs\"\n severity=\"secondary\"\n text\n />\n </div>\n </Message>\n </div>\n </template>\n <div\n v-for=\"([label, items], i) in Object.entries(serverConfigsByCategory)\"\n :key=\"label\"\n >\n <Divider v-if=\"i > 0\" />\n <h3>{{ $t(`serverConfigCategories.${label}`, label) }}</h3>\n <div\n v-for=\"item in items\"\n :key=\"item.name\"\n class=\"flex items-center mb-4\"\n >\n <FormItem\n :item=\"translateItem(item)\"\n v-model:formValue=\"item.value\"\n :id=\"item.id\"\n :labelClass=\"{\n 'text-highlight': item.initialValue !== item.value\n }\"\n />\n </div>\n </div>\n </PanelTemplate>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport Message from 'primevue/message'\nimport Divider from 'primevue/divider'\nimport FormItem from '@/components/common/FormItem.vue'\nimport PanelTemplate from './PanelTemplate.vue'\nimport { useServerConfigStore } from '@/stores/serverConfigStore'\nimport { storeToRefs } from 'pinia'\nimport { electronAPI } from '@/utils/envUtil'\nimport { useSettingStore } from '@/stores/settingStore'\nimport { watch } from 'vue'\nimport { useCopyToClipboard } from '@/hooks/clipboardHooks'\nimport type { FormItem as FormItemType } from '@/types/settingTypes'\nimport type { ServerConfig } from '@/constants/serverConfig'\nimport { useI18n } from 'vue-i18n'\n\nconst settingStore = useSettingStore()\nconst serverConfigStore = useServerConfigStore()\nconst {\n serverConfigsByCategory,\n serverConfigValues,\n launchArgs,\n commandLineArgs,\n modifiedConfigs\n} = storeToRefs(serverConfigStore)\n\nconst revertChanges = () => {\n serverConfigStore.revertChanges()\n}\n\nconst restartApp = () => {\n electronAPI().restartApp()\n}\n\nwatch(launchArgs, (newVal) => {\n settingStore.set('Comfy.Server.LaunchArgs', newVal)\n})\n\nwatch(serverConfigValues, (newVal) => {\n settingStore.set('Comfy.Server.ServerConfigValues', newVal)\n})\n\nconst { copyToClipboard } = useCopyToClipboard()\nconst copyCommandLineArgs = async () => {\n await copyToClipboard(commandLineArgs.value)\n}\n\nconst { t } = useI18n()\nconst translateItem = (item: ServerConfig<any>): FormItemType => {\n return {\n ...item,\n name: t(`serverConfigItems.${item.id}.name`, item.name),\n tooltip: item.tooltip\n ? t(`serverConfigItems.${item.id}.tooltip`, item.tooltip)\n : undefined\n }\n}\n</script>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;AAuFA,UAAM,eAAe;AACrB,UAAM,oBAAoB;AACpB,UAAA;AAAA,MACJ;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA,IACE,YAAY,iBAAiB;AAEjC,UAAM,gBAAgB,6BAAM;AAC1B,wBAAkB,cAAc;AAAA,IAAA,GADZ;AAItB,UAAM,aAAa,6BAAM;AACvB,kBAAA,EAAc;IAAW,GADR;AAIb,UAAA,YAAY,CAAC,WAAW;AACf,mBAAA,IAAI,2BAA2B,MAAM;AAAA,IAAA,CACnD;AAEK,UAAA,oBAAoB,CAAC,WAAW;AACvB,mBAAA,IAAI,mCAAmC,MAAM;AAAA,IAAA,CAC3D;AAEK,UAAA,EAAE,oBAAoB;AAC5B,UAAM,sBAAsB,mCAAY;AAChC,YAAA,gBAAgB,gBAAgB,KAAK;AAAA,IAAA,GADjB;AAItB,UAAA,EAAE,MAAM;AACR,UAAA,gBAAgB,wBAAC,SAA0C;AACxD,aAAA;AAAA,QACL,GAAG;AAAA,QACH,MAAM,EAAE,qBAAqB,KAAK,EAAE,SAAS,KAAK,IAAI;AAAA,QACtD,SAAS,KAAK,UACV,EAAE,qBAAqB,KAAK,EAAE,YAAY,KAAK,OAAO,IACtD;AAAA,MAAA;AAAA,IACN,GAPoB;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

View File

@ -1,92 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, I as useI18n, r as ref, bX as ProgressStatus, o as onMounted, f as openBlock, g as createElementBlock, A as createBaseVNode, ay as createTextVNode, a8 as toDisplayString, z as unref, i as createCommentVNode, h as createVNode, D as script, x as createBlock, v as withDirectives, ad as vShow, bY as BaseTerminal, R as pushScopeId, U as popScopeId, bZ as electronAPI, _ as _export_sfc } from "./index-DIU5yZe9.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-c0d3157e"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
const _hoisted_2 = { class: "text-2xl font-bold" };
const _hoisted_3 = { key: 0 };
const _hoisted_4 = {
key: 0,
class: "flex flex-col items-center gap-4"
};
const _hoisted_5 = { class: "flex items-center my-4 gap-2" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ServerStartView",
setup(__props) {
const electron = electronAPI();
const { t } = useI18n();
const status = ref(ProgressStatus.INITIAL_STATE);
const electronVersion = ref("");
let xterm;
const terminalVisible = ref(true);
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
status.value = newStatus;
if (newStatus === ProgressStatus.ERROR) terminalVisible.value = false;
else xterm?.clear();
}, "updateProgress");
const terminalCreated = /* @__PURE__ */ __name(({ terminal, useAutoSize }, root) => {
xterm = terminal;
useAutoSize(root, true, true);
electron.onLogMessage((message) => {
terminal.write(message);
});
terminal.options.cursorBlink = false;
terminal.options.disableStdin = true;
terminal.options.cursorInactiveStyle = "block";
}, "terminalCreated");
const reinstall = /* @__PURE__ */ __name(() => electron.reinstall(), "reinstall");
const reportIssue = /* @__PURE__ */ __name(() => {
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
}, "reportIssue");
const openLogs = /* @__PURE__ */ __name(() => electron.openLogsFolder(), "openLogs");
onMounted(async () => {
electron.sendReady();
electron.onProgressUpdate(updateProgress);
electronVersion.value = await electron.getElectronVersion();
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("h2", _hoisted_2, [
createTextVNode(toDisplayString(unref(t)(`serverStart.process.${status.value}`)) + " ", 1),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("span", _hoisted_3, " v" + toDisplayString(electronVersion.value), 1)) : createCommentVNode("", true)
]),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("div", _hoisted_4, [
createBaseVNode("div", _hoisted_5, [
createVNode(unref(script), {
icon: "pi pi-flag",
severity: "secondary",
label: unref(t)("serverStart.reportIssue"),
onClick: reportIssue
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-file",
severity: "secondary",
label: unref(t)("serverStart.openLogs"),
onClick: openLogs
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-refresh",
label: unref(t)("serverStart.reinstall"),
onClick: reinstall
}, null, 8, ["label"])
]),
!terminalVisible.value ? (openBlock(), createBlock(unref(script), {
key: 0,
icon: "pi pi-search",
severity: "secondary",
label: unref(t)("serverStart.showTerminal"),
onClick: _cache[0] || (_cache[0] = ($event) => terminalVisible.value = true)
}, null, 8, ["label"])) : createCommentVNode("", true)
])) : createCommentVNode("", true),
withDirectives(createVNode(BaseTerminal, { onCreated: terminalCreated }, null, 512), [
[vShow, terminalVisible.value]
])
]);
};
}
});
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-c0d3157e"]]);
export {
ServerStartView as default
};
//# sourceMappingURL=ServerStartView-BvuHEhuL.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"ServerStartView-BvuHEhuL.js","sources":["../../src/views/ServerStartView.vue"],"sourcesContent":["<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <h2 class=\"text-2xl font-bold\">\n {{ t(`serverStart.process.${status}`) }}\n <span v-if=\"status === ProgressStatus.ERROR\">\n v{{ electronVersion }}\n </span>\n </h2>\n <div\n v-if=\"status === ProgressStatus.ERROR\"\n class=\"flex flex-col items-center gap-4\"\n >\n <div class=\"flex items-center my-4 gap-2\">\n <Button\n icon=\"pi pi-flag\"\n severity=\"secondary\"\n :label=\"t('serverStart.reportIssue')\"\n @click=\"reportIssue\"\n />\n <Button\n icon=\"pi pi-file\"\n severity=\"secondary\"\n :label=\"t('serverStart.openLogs')\"\n @click=\"openLogs\"\n />\n <Button\n icon=\"pi pi-refresh\"\n :label=\"t('serverStart.reinstall')\"\n @click=\"reinstall\"\n />\n </div>\n <Button\n v-if=\"!terminalVisible\"\n icon=\"pi pi-search\"\n severity=\"secondary\"\n :label=\"t('serverStart.showTerminal')\"\n @click=\"terminalVisible = true\"\n />\n </div>\n <BaseTerminal v-show=\"terminalVisible\" @created=\"terminalCreated\" />\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { ref, onMounted, Ref } from 'vue'\nimport BaseTerminal from '@/components/bottomPanel/tabs/terminal/BaseTerminal.vue'\nimport { ProgressStatus } from '@comfyorg/comfyui-electron-types'\nimport { electronAPI } from '@/utils/envUtil'\nimport type { useTerminal } from '@/hooks/bottomPanelTabs/useTerminal'\nimport { Terminal } from '@xterm/xterm'\nimport { useI18n } from 'vue-i18n'\n\nconst electron = electronAPI()\nconst { t } = useI18n()\n\nconst status = ref<ProgressStatus>(ProgressStatus.INITIAL_STATE)\nconst electronVersion = ref<string>('')\nlet xterm: Terminal | undefined\n\nconst terminalVisible = ref(true)\n\nconst updateProgress = ({ status: newStatus }: { status: ProgressStatus }) => {\n status.value = newStatus\n\n // Make critical error screen more obvious.\n if (newStatus === ProgressStatus.ERROR) terminalVisible.value = false\n else xterm?.clear()\n}\n\nconst terminalCreated = (\n { terminal, useAutoSize }: ReturnType<typeof useTerminal>,\n root: Ref<HTMLElement>\n) => {\n xterm = terminal\n\n useAutoSize(root, true, true)\n electron.onLogMessage((message: string) => {\n terminal.write(message)\n })\n\n terminal.options.cursorBlink = false\n terminal.options.disableStdin = true\n terminal.options.cursorInactiveStyle = 'block'\n}\n\nconst reinstall = () => electron.reinstall()\nconst reportIssue = () => {\n window.open('https://forum.comfy.org/c/v1-feedback/', '_blank')\n}\nconst openLogs = () => electron.openLogsFolder()\n\nonMounted(async () => {\n electron.sendReady()\n electron.onProgressUpdate(updateProgress)\n electronVersion.value = await electron.getElectronVersion()\n})\n</script>\n\n<style scoped>\n:deep(.xterm-helper-textarea) {\n /* Hide this as it moves all over when uv is running */\n display: none;\n}\n</style>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;AAuDA,UAAM,WAAW;AACX,UAAA,EAAE,MAAM;AAER,UAAA,SAAS,IAAoB,eAAe,aAAa;AACzD,UAAA,kBAAkB,IAAY,EAAE;AAClC,QAAA;AAEE,UAAA,kBAAkB,IAAI,IAAI;AAEhC,UAAM,iBAAiB,wBAAC,EAAE,QAAQ,gBAA4C;AAC5E,aAAO,QAAQ;AAGf,UAAI,cAAc,eAAe,MAAO,iBAAgB,QAAQ;AAAA,kBACpD,MAAM;AAAA,IAAA,GALG;AAQvB,UAAM,kBAAkB,wBACtB,EAAE,UAAU,YAAA,GACZ,SACG;AACK,cAAA;AAEI,kBAAA,MAAM,MAAM,IAAI;AACnB,eAAA,aAAa,CAAC,YAAoB;AACzC,iBAAS,MAAM,OAAO;AAAA,MAAA,CACvB;AAED,eAAS,QAAQ,cAAc;AAC/B,eAAS,QAAQ,eAAe;AAChC,eAAS,QAAQ,sBAAsB;AAAA,IAAA,GAbjB;AAgBlB,UAAA,YAAY,6BAAM,SAAS,aAAf;AAClB,UAAM,cAAc,6BAAM;AACjB,aAAA,KAAK,0CAA0C,QAAQ;AAAA,IAAA,GAD5C;AAGd,UAAA,WAAW,6BAAM,SAAS,kBAAf;AAEjB,cAAU,YAAY;AACpB,eAAS,UAAU;AACnB,eAAS,iBAAiB,cAAc;AACxB,sBAAA,QAAQ,MAAM,SAAS,mBAAmB;AAAA,IAAA,CAC3D;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

98
web/assets/ServerStartView-CIDTUh4x.js generated vendored Normal file
View File

@ -0,0 +1,98 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, a1 as useI18n, ab as ref, b_ as ProgressStatus, m as onMounted, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, aE as createTextVNode, X as toDisplayString, j as unref, f as createElementBlock, I as createCommentVNode, N as createVNode, l as script, i as withDirectives, v as vShow, b$ as BaseTerminal, aL as pushScopeId, aM as popScopeId, c0 as electronAPI, _ as _export_sfc } from "./index-DjNHn37O.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-42c1131d"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "text-2xl font-bold" };
const _hoisted_2 = { key: 0 };
const _hoisted_3 = {
key: 0,
class: "flex flex-col items-center gap-4"
};
const _hoisted_4 = { class: "flex items-center my-4 gap-2" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "ServerStartView",
setup(__props) {
const electron = electronAPI();
const { t } = useI18n();
const status = ref(ProgressStatus.INITIAL_STATE);
const electronVersion = ref("");
let xterm;
const terminalVisible = ref(true);
const updateProgress = /* @__PURE__ */ __name(({ status: newStatus }) => {
status.value = newStatus;
if (newStatus === ProgressStatus.ERROR) terminalVisible.value = false;
else xterm?.clear();
}, "updateProgress");
const terminalCreated = /* @__PURE__ */ __name(({ terminal, useAutoSize }, root) => {
xterm = terminal;
useAutoSize(root, true, true);
electron.onLogMessage((message) => {
terminal.write(message);
});
terminal.options.cursorBlink = false;
terminal.options.disableStdin = true;
terminal.options.cursorInactiveStyle = "block";
}, "terminalCreated");
const reinstall = /* @__PURE__ */ __name(() => electron.reinstall(), "reinstall");
const reportIssue = /* @__PURE__ */ __name(() => {
window.open("https://forum.comfy.org/c/v1-feedback/", "_blank");
}, "reportIssue");
const openLogs = /* @__PURE__ */ __name(() => electron.openLogsFolder(), "openLogs");
onMounted(async () => {
electron.sendReady();
electron.onProgressUpdate(updateProgress);
electronVersion.value = await electron.getElectronVersion();
});
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, {
dark: "",
class: "flex-col"
}, {
default: withCtx(() => [
createBaseVNode("h2", _hoisted_1, [
createTextVNode(toDisplayString(unref(t)(`serverStart.process.${status.value}`)) + " ", 1),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("span", _hoisted_2, " v" + toDisplayString(electronVersion.value), 1)) : createCommentVNode("", true)
]),
status.value === unref(ProgressStatus).ERROR ? (openBlock(), createElementBlock("div", _hoisted_3, [
createBaseVNode("div", _hoisted_4, [
createVNode(unref(script), {
icon: "pi pi-flag",
severity: "secondary",
label: unref(t)("serverStart.reportIssue"),
onClick: reportIssue
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-file",
severity: "secondary",
label: unref(t)("serverStart.openLogs"),
onClick: openLogs
}, null, 8, ["label"]),
createVNode(unref(script), {
icon: "pi pi-refresh",
label: unref(t)("serverStart.reinstall"),
onClick: reinstall
}, null, 8, ["label"])
]),
!terminalVisible.value ? (openBlock(), createBlock(unref(script), {
key: 0,
icon: "pi pi-search",
severity: "secondary",
label: unref(t)("serverStart.showTerminal"),
onClick: _cache[0] || (_cache[0] = ($event) => terminalVisible.value = true)
}, null, 8, ["label"])) : createCommentVNode("", true)
])) : createCommentVNode("", true),
withDirectives(createVNode(BaseTerminal, { onCreated: terminalCreated }, null, 512), [
[vShow, terminalVisible.value]
])
]),
_: 1
});
};
}
});
const ServerStartView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-42c1131d"]]);
export {
ServerStartView as default
};
//# sourceMappingURL=ServerStartView-CIDTUh4x.js.map

View File

@ -1,5 +1,5 @@
[data-v-c0d3157e] .xterm-helper-textarea { [data-v-42c1131d] .xterm-helper-textarea {
/* Hide this as it moves all over when uv is running */ /* Hide this as it moves all over when uv is running */
display: none; display: none;
} }

102
web/assets/UserSelectView-B3jYchWu.js generated vendored Normal file
View File

@ -0,0 +1,102 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, aX as useUserStore, bW as useRouter, ab as ref, c as computed, m as onMounted, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, X as toDisplayString, N as createVNode, bX as withKeys, j as unref, av as script, bQ as script$1, bY as script$2, bZ as script$3, aE as createTextVNode, I as createCommentVNode, l as script$4 } from "./index-DjNHn37O.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
const _hoisted_1 = {
id: "comfy-user-selection",
class: "min-w-84 relative rounded-lg bg-[var(--comfy-menu-bg)] p-5 px-10 shadow-lg"
};
const _hoisted_2 = /* @__PURE__ */ createBaseVNode("h1", { class: "my-2.5 mb-7 font-normal" }, "ComfyUI", -1);
const _hoisted_3 = { class: "flex w-full flex-col items-center" };
const _hoisted_4 = { class: "flex w-full flex-col gap-2" };
const _hoisted_5 = { for: "new-user-input" };
const _hoisted_6 = { class: "flex w-full flex-col gap-2" };
const _hoisted_7 = { for: "existing-user-select" };
const _hoisted_8 = { class: "mt-5" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "UserSelectView",
setup(__props) {
const userStore = useUserStore();
const router = useRouter();
const selectedUser = ref(null);
const newUsername = ref("");
const loginError = ref("");
const createNewUser = computed(() => newUsername.value.trim() !== "");
const newUserExistsError = computed(() => {
return userStore.users.find((user) => user.username === newUsername.value) ? `User "${newUsername.value}" already exists` : "";
});
const error = computed(() => newUserExistsError.value || loginError.value);
const login = /* @__PURE__ */ __name(async () => {
try {
const user = createNewUser.value ? await userStore.createUser(newUsername.value) : selectedUser.value;
if (!user) {
throw new Error("No user selected");
}
userStore.login(user);
router.push("/");
} catch (err) {
loginError.value = err.message ?? JSON.stringify(err);
}
}, "login");
onMounted(async () => {
if (!userStore.initialized) {
await userStore.initialize();
}
});
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { dark: "" }, {
default: withCtx(() => [
createBaseVNode("main", _hoisted_1, [
_hoisted_2,
createBaseVNode("div", _hoisted_3, [
createBaseVNode("div", _hoisted_4, [
createBaseVNode("label", _hoisted_5, toDisplayString(_ctx.$t("userSelect.newUser")) + ":", 1),
createVNode(unref(script), {
id: "new-user-input",
modelValue: newUsername.value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => newUsername.value = $event),
placeholder: _ctx.$t("userSelect.enterUsername"),
onKeyup: withKeys(login, ["enter"])
}, null, 8, ["modelValue", "placeholder"])
]),
createVNode(unref(script$1)),
createBaseVNode("div", _hoisted_6, [
createBaseVNode("label", _hoisted_7, toDisplayString(_ctx.$t("userSelect.existingUser")) + ":", 1),
createVNode(unref(script$2), {
modelValue: selectedUser.value,
"onUpdate:modelValue": _cache[1] || (_cache[1] = ($event) => selectedUser.value = $event),
class: "w-full",
inputId: "existing-user-select",
options: unref(userStore).users,
"option-label": "username",
placeholder: _ctx.$t("userSelect.selectUser"),
disabled: createNewUser.value
}, null, 8, ["modelValue", "options", "placeholder", "disabled"]),
error.value ? (openBlock(), createBlock(unref(script$3), {
key: 0,
severity: "error"
}, {
default: withCtx(() => [
createTextVNode(toDisplayString(error.value), 1)
]),
_: 1
})) : createCommentVNode("", true)
]),
createBaseVNode("footer", _hoisted_8, [
createVNode(unref(script$4), {
label: _ctx.$t("userSelect.next"),
onClick: login
}, null, 8, ["label"])
])
])
])
]),
_: 1
});
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=UserSelectView-B3jYchWu.js.map

View File

@ -1,98 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, J as useUserStore, bU as useRouter, r as ref, q as computed, o as onMounted, f as openBlock, g as createElementBlock, A as createBaseVNode, a8 as toDisplayString, h as createVNode, z as unref, aq as script, bN as script$1, bV as script$2, x as createBlock, y as withCtx, ay as createTextVNode, bW as script$3, i as createCommentVNode, D as script$4 } from "./index-DIU5yZe9.js";
const _hoisted_1 = {
id: "comfy-user-selection",
class: "font-sans flex flex-col items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto"
};
const _hoisted_2 = { class: "mt-[5vh] 2xl:mt-[20vh] min-w-84 relative rounded-lg bg-[var(--comfy-menu-bg)] p-5 px-10 shadow-lg" };
const _hoisted_3 = /* @__PURE__ */ createBaseVNode("h1", { class: "my-2.5 mb-7 font-normal" }, "ComfyUI", -1);
const _hoisted_4 = { class: "flex w-full flex-col items-center" };
const _hoisted_5 = { class: "flex w-full flex-col gap-2" };
const _hoisted_6 = { for: "new-user-input" };
const _hoisted_7 = { class: "flex w-full flex-col gap-2" };
const _hoisted_8 = { for: "existing-user-select" };
const _hoisted_9 = { class: "mt-5" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "UserSelectView",
setup(__props) {
const userStore = useUserStore();
const router = useRouter();
const selectedUser = ref(null);
const newUsername = ref("");
const loginError = ref("");
const createNewUser = computed(() => newUsername.value.trim() !== "");
const newUserExistsError = computed(() => {
return userStore.users.find((user) => user.username === newUsername.value) ? `User "${newUsername.value}" already exists` : "";
});
const error = computed(() => newUserExistsError.value || loginError.value);
const login = /* @__PURE__ */ __name(async () => {
try {
const user = createNewUser.value ? await userStore.createUser(newUsername.value) : selectedUser.value;
if (!user) {
throw new Error("No user selected");
}
userStore.login(user);
router.push("/");
} catch (err) {
loginError.value = err.message ?? JSON.stringify(err);
}
}, "login");
onMounted(async () => {
if (!userStore.initialized) {
await userStore.initialize();
}
});
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("main", _hoisted_2, [
_hoisted_3,
createBaseVNode("form", _hoisted_4, [
createBaseVNode("div", _hoisted_5, [
createBaseVNode("label", _hoisted_6, toDisplayString(_ctx.$t("userSelect.newUser")) + ":", 1),
createVNode(unref(script), {
id: "new-user-input",
modelValue: newUsername.value,
"onUpdate:modelValue": _cache[0] || (_cache[0] = ($event) => newUsername.value = $event),
placeholder: _ctx.$t("userSelect.enterUsername")
}, null, 8, ["modelValue", "placeholder"])
]),
createVNode(unref(script$1)),
createBaseVNode("div", _hoisted_7, [
createBaseVNode("label", _hoisted_8, toDisplayString(_ctx.$t("userSelect.existingUser")) + ":", 1),
createVNode(unref(script$2), {
modelValue: selectedUser.value,
"onUpdate:modelValue": _cache[1] || (_cache[1] = ($event) => selectedUser.value = $event),
class: "w-full",
inputId: "existing-user-select",
options: unref(userStore).users,
"option-label": "username",
placeholder: _ctx.$t("userSelect.selectUser"),
disabled: createNewUser.value
}, null, 8, ["modelValue", "options", "placeholder", "disabled"]),
error.value ? (openBlock(), createBlock(unref(script$3), {
key: 0,
severity: "error"
}, {
default: withCtx(() => [
createTextVNode(toDisplayString(error.value), 1)
]),
_: 1
})) : createCommentVNode("", true)
]),
createBaseVNode("footer", _hoisted_9, [
createVNode(unref(script$4), {
label: _ctx.$t("userSelect.next"),
onClick: login
}, null, 8, ["label"])
])
])
])
]);
};
}
});
export {
_sfc_main as default
};
//# sourceMappingURL=UserSelectView-C_4L-Yqf.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"UserSelectView-C_4L-Yqf.js","sources":["../../src/views/UserSelectView.vue"],"sourcesContent":["<template>\n <div\n id=\"comfy-user-selection\"\n class=\"font-sans flex flex-col items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <main\n class=\"mt-[5vh] 2xl:mt-[20vh] min-w-84 relative rounded-lg bg-[var(--comfy-menu-bg)] p-5 px-10 shadow-lg\"\n >\n <h1 class=\"my-2.5 mb-7 font-normal\">ComfyUI</h1>\n <form class=\"flex w-full flex-col items-center\">\n <div class=\"flex w-full flex-col gap-2\">\n <label for=\"new-user-input\">{{ $t('userSelect.newUser') }}:</label>\n <InputText\n id=\"new-user-input\"\n v-model=\"newUsername\"\n :placeholder=\"$t('userSelect.enterUsername')\"\n />\n </div>\n <Divider />\n <div class=\"flex w-full flex-col gap-2\">\n <label for=\"existing-user-select\"\n >{{ $t('userSelect.existingUser') }}:</label\n >\n <Select\n v-model=\"selectedUser\"\n class=\"w-full\"\n inputId=\"existing-user-select\"\n :options=\"userStore.users\"\n option-label=\"username\"\n :placeholder=\"$t('userSelect.selectUser')\"\n :disabled=\"createNewUser\"\n />\n <Message v-if=\"error\" severity=\"error\">{{ error }}</Message>\n </div>\n <footer class=\"mt-5\">\n <Button :label=\"$t('userSelect.next')\" @click=\"login\" />\n </footer>\n </form>\n </main>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport Divider from 'primevue/divider'\nimport InputText from 'primevue/inputtext'\nimport Select from 'primevue/select'\nimport Message from 'primevue/message'\nimport { User, useUserStore } from '@/stores/userStore'\nimport { useRouter } from 'vue-router'\nimport { computed, onMounted, ref } from 'vue'\n\nconst userStore = useUserStore()\nconst router = useRouter()\n\nconst selectedUser = ref<User | null>(null)\nconst newUsername = ref('')\nconst loginError = ref('')\n\nconst createNewUser = computed(() => newUsername.value.trim() !== '')\nconst newUserExistsError = computed(() => {\n return userStore.users.find((user) => user.username === newUsername.value)\n ? `User \"${newUsername.value}\" already exists`\n : ''\n})\nconst error = computed(() => newUserExistsError.value || loginError.value)\n\nconst login = async () => {\n try {\n const user = createNewUser.value\n ? await userStore.createUser(newUsername.value)\n : selectedUser.value\n\n if (!user) {\n throw new Error('No user selected')\n }\n\n userStore.login(user)\n router.push('/')\n } catch (err) {\n loginError.value = err.message ?? JSON.stringify(err)\n }\n}\n\nonMounted(async () => {\n if (!userStore.initialized) {\n await userStore.initialize()\n }\n})\n</script>\n"],"names":[],"mappings":";;;;;;;;;;;;;;;;;;AAoDA,UAAM,YAAY;AAClB,UAAM,SAAS;AAET,UAAA,eAAe,IAAiB,IAAI;AACpC,UAAA,cAAc,IAAI,EAAE;AACpB,UAAA,aAAa,IAAI,EAAE;AAEzB,UAAM,gBAAgB,SAAS,MAAM,YAAY,MAAM,KAAA,MAAW,EAAE;AAC9D,UAAA,qBAAqB,SAAS,MAAM;AACxC,aAAO,UAAU,MAAM,KAAK,CAAC,SAAS,KAAK,aAAa,YAAY,KAAK,IACrE,SAAS,YAAY,KAAK,qBAC1B;AAAA,IAAA,CACL;AACD,UAAM,QAAQ,SAAS,MAAM,mBAAmB,SAAS,WAAW,KAAK;AAEzE,UAAM,QAAQ,mCAAY;AACpB,UAAA;AACI,cAAA,OAAO,cAAc,QACvB,MAAM,UAAU,WAAW,YAAY,KAAK,IAC5C,aAAa;AAEjB,YAAI,CAAC,MAAM;AACH,gBAAA,IAAI,MAAM,kBAAkB;AAAA,QACpC;AAEA,kBAAU,MAAM,IAAI;AACpB,eAAO,KAAK,GAAG;AAAA,eACR,KAAK;AACZ,mBAAW,QAAQ,IAAI,WAAW,KAAK,UAAU,GAAG;AAAA,MACtD;AAAA,IAAA,GAdY;AAiBd,cAAU,YAAY;AAChB,UAAA,CAAC,UAAU,aAAa;AAC1B,cAAM,UAAU;MAClB;AAAA,IAAA,CACD;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;"}

View File

@ -1,5 +1,5 @@
.animated-gradient-text[data-v-c4d014c5] { .animated-gradient-text[data-v-7dfaf74c] {
font-weight: 700; font-weight: 700;
font-size: clamp(2rem, 8vw, 4rem); font-size: clamp(2rem, 8vw, 4rem);
background: linear-gradient(to right, #12c2e9, #c471ed, #f64f59, #12c2e9); background: linear-gradient(to right, #12c2e9, #c471ed, #f64f59, #12c2e9);
@ -7,12 +7,12 @@
background-clip: text; background-clip: text;
-webkit-background-clip: text; -webkit-background-clip: text;
-webkit-text-fill-color: transparent; -webkit-text-fill-color: transparent;
animation: gradient-c4d014c5 8s linear infinite; animation: gradient-7dfaf74c 8s linear infinite;
} }
.text-glow[data-v-c4d014c5] { .text-glow[data-v-7dfaf74c] {
filter: drop-shadow(0 0 8px rgba(255, 255, 255, 0.3)); filter: drop-shadow(0 0 8px rgba(255, 255, 255, 0.3));
} }
@keyframes gradient-c4d014c5 { @keyframes gradient-7dfaf74c {
0% { 0% {
background-position: 0% center; background-position: 0% center;
} }
@ -20,11 +20,11 @@
background-position: 300% center; background-position: 300% center;
} }
} }
.fade-in-up[data-v-c4d014c5] { .fade-in-up[data-v-7dfaf74c] {
animation: fadeInUp-c4d014c5 1.5s ease-out; animation: fadeInUp-7dfaf74c 1.5s ease-out;
animation-fill-mode: both; animation-fill-mode: both;
} }
@keyframes fadeInUp-c4d014c5 { @keyframes fadeInUp-7dfaf74c {
0% { 0% {
opacity: 0; opacity: 0;
transform: translateY(20px); transform: translateY(20px);

37
web/assets/WelcomeView-Db7ZDfZo.js generated vendored
View File

@ -1,37 +0,0 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { a as defineComponent, bU as useRouter, f as openBlock, g as createElementBlock, A as createBaseVNode, a8 as toDisplayString, h as createVNode, z as unref, D as script, R as pushScopeId, U as popScopeId, _ as _export_sfc } from "./index-DIU5yZe9.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-c4d014c5"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto" };
const _hoisted_2 = { class: "flex flex-col items-center justify-center gap-8 p-8" };
const _hoisted_3 = { class: "animated-gradient-text text-glow select-none" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "WelcomeView",
setup(__props) {
const router = useRouter();
const navigateTo = /* @__PURE__ */ __name((path) => {
router.push(path);
}, "navigateTo");
return (_ctx, _cache) => {
return openBlock(), createElementBlock("div", _hoisted_1, [
createBaseVNode("div", _hoisted_2, [
createBaseVNode("h1", _hoisted_3, toDisplayString(_ctx.$t("welcome.title")), 1),
createVNode(unref(script), {
label: _ctx.$t("welcome.getStarted"),
icon: "pi pi-arrow-right",
iconPos: "right",
size: "large",
rounded: "",
onClick: _cache[0] || (_cache[0] = ($event) => navigateTo("/install")),
class: "p-4 text-lg fade-in-up"
}, null, 8, ["label"])
])
]);
};
}
});
const WelcomeView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-c4d014c5"]]);
export {
WelcomeView as default
};
//# sourceMappingURL=WelcomeView-Db7ZDfZo.js.map

View File

@ -1 +0,0 @@
{"version":3,"file":"WelcomeView-Db7ZDfZo.js","sources":["../../src/views/WelcomeView.vue"],"sourcesContent":["<template>\n <div\n class=\"font-sans flex flex-col justify-center items-center h-screen m-0 text-neutral-300 bg-neutral-900 dark-theme pointer-events-auto\"\n >\n <div class=\"flex flex-col items-center justify-center gap-8 p-8\">\n <!-- Header -->\n <h1 class=\"animated-gradient-text text-glow select-none\">\n {{ $t('welcome.title') }}\n </h1>\n\n <!-- Get Started Button -->\n <Button\n :label=\"$t('welcome.getStarted')\"\n icon=\"pi pi-arrow-right\"\n iconPos=\"right\"\n size=\"large\"\n rounded\n @click=\"navigateTo('/install')\"\n class=\"p-4 text-lg fade-in-up\"\n />\n </div>\n </div>\n</template>\n\n<script setup lang=\"ts\">\nimport Button from 'primevue/button'\nimport { useRouter } from 'vue-router'\n\nconst router = useRouter()\nconst navigateTo = (path: string) => {\n router.push(path)\n}\n</script>\n\n<style scoped>\n.animated-gradient-text {\n @apply font-bold;\n font-size: clamp(2rem, 8vw, 4rem);\n background: linear-gradient(to right, #12c2e9, #c471ed, #f64f59, #12c2e9);\n background-size: 300% auto;\n background-clip: text;\n -webkit-background-clip: text;\n -webkit-text-fill-color: transparent;\n animation: gradient 8s linear infinite;\n}\n\n.text-glow {\n filter: drop-shadow(0 0 8px rgba(255, 255, 255, 0.3));\n}\n\n@keyframes gradient {\n 0% {\n background-position: 0% center;\n }\n\n 100% {\n background-position: 300% center;\n }\n}\n\n.fade-in-up {\n animation: fadeInUp 1.5s ease-out;\n animation-fill-mode: both;\n}\n\n@keyframes fadeInUp {\n 0% {\n opacity: 0;\n transform: translateY(20px);\n }\n\n 100% {\n opacity: 1;\n transform: translateY(0);\n }\n}\n</style>\n"],"names":[],"mappings":";;;;;;;;;;AA4BA,UAAM,SAAS;AACT,UAAA,aAAa,wBAAC,SAAiB;AACnC,aAAO,KAAK,IAAI;AAAA,IAAA,GADC;;;;;;;;;;;;;;;;;;;;"}

40
web/assets/WelcomeView-N0ZXLjdi.js generated vendored Normal file
View File

@ -0,0 +1,40 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { d as defineComponent, bW as useRouter, o as openBlock, k as createBlock, M as withCtx, H as createBaseVNode, X as toDisplayString, N as createVNode, j as unref, l as script, aL as pushScopeId, aM as popScopeId, _ as _export_sfc } from "./index-DjNHn37O.js";
import { _ as _sfc_main$1 } from "./BaseViewTemplate-BNGF4K22.js";
const _withScopeId = /* @__PURE__ */ __name((n) => (pushScopeId("data-v-7dfaf74c"), n = n(), popScopeId(), n), "_withScopeId");
const _hoisted_1 = { class: "flex flex-col items-center justify-center gap-8 p-8" };
const _hoisted_2 = { class: "animated-gradient-text text-glow select-none" };
const _sfc_main = /* @__PURE__ */ defineComponent({
__name: "WelcomeView",
setup(__props) {
const router = useRouter();
const navigateTo = /* @__PURE__ */ __name((path) => {
router.push(path);
}, "navigateTo");
return (_ctx, _cache) => {
return openBlock(), createBlock(_sfc_main$1, { dark: "" }, {
default: withCtx(() => [
createBaseVNode("div", _hoisted_1, [
createBaseVNode("h1", _hoisted_2, toDisplayString(_ctx.$t("welcome.title")), 1),
createVNode(unref(script), {
label: _ctx.$t("welcome.getStarted"),
icon: "pi pi-arrow-right",
iconPos: "right",
size: "large",
rounded: "",
onClick: _cache[0] || (_cache[0] = ($event) => navigateTo("/install")),
class: "p-4 text-lg fade-in-up"
}, null, 8, ["label"])
])
]),
_: 1
});
};
}
});
const WelcomeView = /* @__PURE__ */ _export_sfc(_sfc_main, [["__scopeId", "data-v-7dfaf74c"]]);
export {
WelcomeView as default
};
//# sourceMappingURL=WelcomeView-N0ZXLjdi.js.map

BIN
web/assets/images/apple-mps-logo.png generated vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

5
web/assets/images/manual-configuration.svg generated vendored Normal file
View File

@ -0,0 +1,5 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="21.59mm" height="6.922mm" version="1.1" viewBox="0 0 21.59 6.922" xmlns="http://www.w3.org/2000/svg">
<path d="m6.667 0.941v1.345h-0.305v-1.345h-0.699v1.345h-0.304v-1.651h0.304v0.291q3e-3 -0.06 0.027-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.393q0.06 0 0.114 0.023 0.054 0.021 0.096 0.062 0.041 0.038 0.066 0.093 0.026 0.052 0.027 0.113 3e-3 -0.06 0.026-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.393q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v1.347h-0.298v-1.345zm1.512 0.624q0-0.063 0.023-0.117 0.024-0.055 0.065-0.097 0.041-0.041 0.097-0.065 0.055-0.024 0.117-0.024h0.787v-0.321h-0.996v-0.305h0.996q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v1.346h-0.302v-0.279q-4e-3 0.057-0.031 0.108-0.026 0.051-0.068 0.089-0.04 0.037-0.093 0.058-0.052 0.021-0.111 0.021h-0.483q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm0.303 0.415h0.787v-0.415h-0.786zm3.063 0.306h-0.306v-1.345h-0.851v1.345h-0.304v-1.651h0.303v0.291q3e-3 -0.06 0.027-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.545q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119zm0.508-1.651h0.303v1.346h0.851v-1.346h0.305v1.651h-0.304v-0.279q-4e-3 0.057-0.031 0.108-0.026 0.051-0.068 0.089-0.04 0.037-0.093 0.058-0.052 0.021-0.111 0.021h-0.547q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm1.969 0.93q0-0.063 0.023-0.117 0.024-0.055 0.065-0.097 0.041-0.041 0.097-0.065 0.055-0.024 0.117-0.024h0.787v-0.321h-0.996v-0.305h0.996q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v1.346h-0.302v-0.279q-4e-3 0.057-0.031 0.108-0.026 0.051-0.068 0.089-0.04 0.037-0.093 0.058-0.052 0.021-0.111 0.021h-0.483q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm0.303 0.415h0.787v-0.415h-0.786zm1.906-1.98v2.286h-0.304v-2.286z" fill="#fff"/>
<path d="m0.303 4.909v1.04h0.787v-0.279h0.305v0.279q0 0.063-0.024 0.119-0.023 0.055-0.065 0.097-0.04 0.04-0.096 0.065-0.055 0.023-0.119 0.023h-0.788q-0.062 0-0.117-0.023-0.056-0.023-0.098-0.063-0.04-0.042-0.065-0.098-0.023-0.056-0.023-0.119v-1.04q0-0.063 0.023-0.119 0.024-0.055 0.065-0.096t0.097-0.065q0.055-0.024 0.117-0.024h0.787q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v0.279h-0.302v-0.279zm3.029 1.04q0 0.063-0.024 0.119-0.023 0.055-0.065 0.097-0.04 0.04-0.096 0.065-0.054 0.023-0.117 0.023h-0.821q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119v-1.04q0-0.063 0.023-0.119 0.024-0.055 0.065-0.096t0.097-0.065q0.055-0.024 0.117-0.024h0.82q0.063 0 0.117 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119zm-1.123-1.04v1.04h0.82v-1.04zm3.092 1.345h-0.305v-1.345h-0.851v1.345h-0.304v-1.651h0.303v0.291q3e-3 -0.06 0.027-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.545q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119zm1.12-1.981v0.33h0.542v0.305h-0.541v1.345h-0.305v-1.344h-0.403v-0.305h0.403v-0.33q0-0.063 0.023-0.117 0.024-0.055 0.066-0.097 0.041-0.041 0.097-0.065 0.055-0.024 0.117-0.024h0.542v0.305zm1.277 0.33v1.651h-0.305v-1.651zm-0.32-0.635h0.336v0.317h-0.336zm0.844 0.941q0-0.063 0.023-0.119 0.024-0.055 0.065-0.096t0.097-0.065q0.055-0.024 0.117-0.024h0.547q0.06 0 0.114 0.023 0.054 0.021 0.094 0.062 0.041 0.038 0.066 0.093 0.026 0.052 0.027 0.113v-0.291h0.305v2.012q0 0.063-0.024 0.119-0.023 0.055-0.065 0.096-0.04 0.041-0.096 0.065-0.055 0.024-0.119 0.024h-0.964v-0.305h0.964v-0.424h-0.851q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm1.154 0.976v-0.976h-0.851v0.976zm0.813-1.282h0.303v1.345h0.851v-1.345h0.305v1.651h-0.305v-0.279q-4e-3 0.057-0.031 0.108-0.026 0.051-0.068 0.089-0.04 0.037-0.093 0.058-0.052 0.021-0.111 0.021h-0.547q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm2.272 0.305v1.345h-0.303v-1.651h0.303v0.291q3e-3 -0.06 0.027-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.324q0.063 0 0.117 0.024 0.055 0.023 0.097 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v0.279h-0.305v-0.279zm1.314 0.624q0-0.063 0.023-0.117 0.024-0.055 0.065-0.097 0.041-0.041 0.097-0.065 0.055-0.024 0.117-0.024h0.787v-0.319h-0.996v-0.305h0.996q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119v1.345h-0.305v-0.279q-4e-3 0.057-0.031 0.108-0.026 0.051-0.068 0.089-0.04 0.037-0.093 0.058-0.052 0.021-0.111 0.021h-0.483q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119zm0.303 0.415h0.787v-0.415h-0.787zm1.505-1.345h0.403v-0.508h0.305v0.508h0.542v0.305h-0.542v1.04h0.542v0.305h-0.542q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.041-0.041-0.066-0.097-0.023-0.055-0.023-0.119v-1.04h-0.403zm2.08 0v1.651h-0.299v-1.649zm-0.314-0.634h0.336v0.317h-0.336zm2.272 1.981q0 0.063-0.024 0.119-0.023 0.055-0.065 0.097-0.04 0.04-0.096 0.065-0.054 0.023-0.117 0.023h-0.82q-0.062 0-0.117-0.023-0.055-0.024-0.097-0.065-0.04-0.041-0.065-0.097-0.023-0.055-0.023-0.119v-1.04q0-0.063 0.023-0.119 0.024-0.055 0.065-0.096t0.097-0.065q0.055-0.024 0.117-0.024h0.82q0.063 0 0.117 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119zm-1.123-1.04v1.04h0.82v-1.04zm3.092 1.345h-0.305v-1.345h-0.851v1.345h-0.303v-1.651h0.303v0.291q3e-3 -0.06 0.027-0.113 0.024-0.054 0.065-0.093 0.041-0.04 0.096-0.062 0.054-0.023 0.116-0.023h0.545q0.063 0 0.119 0.024 0.055 0.023 0.096 0.065 0.041 0.04 0.065 0.096 0.024 0.055 0.024 0.119z" fill="#fff"/>
</svg>

After

Width:  |  Height:  |  Size: 5.8 KiB

6
web/assets/images/nvidia-logo.svg generated vendored Normal file
View File

@ -0,0 +1,6 @@
<svg enable-background="new 0 0 974.7 179.7" version="1.1" viewBox="0 0 974.7 179.7" xml:space="preserve" xmlns="http://www.w3.org/2000/svg" width="110" height="44"><title> Artificial Intelligence Computing Leadership from NVIDIA</title>
<path fill="#FFFFFF" d="m962.1 144.1v-2.7h1.7c0.9 0 2.2 0.1 2.2 1.2s-0.7 1.5-1.8 1.5h-2.1m0 1.9h1.2l2.7 4.7h2.9l-3-4.9c1.5 0.1 2.7-1 2.8-2.5v-0.4c0-2.6-1.8-3.4-4.8-3.4h-4.3v11.2h2.5v-4.7m12.6-0.9c0-6.6-5.1-10.4-10.8-10.4s-10.8 3.8-10.8 10.4 5.1 10.4 10.8 10.4 10.8-3.8 10.8-10.4m-3.2 0c0.2 4.2-3.1 7.8-7.3 8h-0.3c-4.4 0.2-8.1-3.3-8.3-7.7s3.3-8.1 7.7-8.3 8.1 3.3 8.3 7.7c-0.1 0.1-0.1 0.2-0.1 0.3z"></path>
<path fill="#FFFFFF" d="m578.2 34v118h33.3v-118h-33.3zm-262-0.2v118.1h33.6v-91.7l26.2 0.1c8.6 0 14.6 2.1 18.7 6.5 5.3 5.6 7.4 14.7 7.4 31.2v53.9h32.6v-65.2c0-46.6-29.7-52.9-58.7-52.9h-59.8zm315.7 0.2v118h54c28.8 0 38.2-4.8 48.3-15.5 7.2-7.5 11.8-24.1 11.8-42.2 0-16.6-3.9-31.4-10.8-40.6-12.2-16.5-30-19.7-56.6-19.7h-46.7zm33 25.6h14.3c20.8 0 34.2 9.3 34.2 33.5s-13.4 33.6-34.2 33.6h-14.3v-67.1zm-134.7-25.6l-27.8 93.5-26.6-93.5h-36l38 118h48l38.4-118h-34zm231.4 118h33.3v-118h-33.3v118zm93.4-118l-46.5 117.9h32.8l7.4-20.9h55l7 20.8h35.7l-46.9-117.8h-44.5zm21.6 21.5l20.2 55.2h-41l20.8-55.2z">
</path>
<path fill="#76B900" d="m101.3 53.6v-16.2c1.6-0.1 3.2-0.2 4.8-0.2 44.4-1.4 73.5 38.2 73.5 38.2s-31.4 43.6-65.1 43.6c-4.5 0-8.9-0.7-13.1-2.1v-49.2c17.3 2.1 20.8 9.7 31.1 27l23.1-19.4s-16.9-22.1-45.3-22.1c-3-0.1-6 0.1-9 0.4m0-53.6v24.2l4.8-0.3c61.7-2.1 102 50.6 102 50.6s-46.2 56.2-94.3 56.2c-4.2 0-8.3-0.4-12.4-1.1v15c3.4 0.4 6.9 0.7 10.3 0.7 44.8 0 77.2-22.9 108.6-49.9 5.2 4.2 26.5 14.3 30.9 18.7-29.8 25-99.3 45.1-138.7 45.1-3.8 0-7.4-0.2-11-0.6v21.1h170.2v-179.7h-170.4zm0 116.9v12.8c-41.4-7.4-52.9-50.5-52.9-50.5s19.9-22 52.9-25.6v14h-0.1c-17.3-2.1-30.9 14.1-30.9 14.1s7.7 27.3 31 35.2m-73.5-39.5s24.5-36.2 73.6-40v-13.2c-54.4 4.4-101.4 50.4-101.4 50.4s26.6 77 101.3 84v-14c-54.8-6.8-73.5-67.2-73.5-67.2z"></path>
</svg>

After

Width:  |  Height:  |  Size: 1.9 KiB

27
web/assets/index-5HFeZax4.js generated vendored Normal file
View File

@ -0,0 +1,27 @@
var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { ct as script$1, H as createBaseVNode, o as openBlock, f as createElementBlock, D as mergeProps } from "./index-DjNHn37O.js";
var script = {
name: "PlusIcon",
"extends": script$1
};
var _hoisted_1 = /* @__PURE__ */ createBaseVNode("path", {
d: "M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2 = [_hoisted_1];
function render(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_2, 16);
}
__name(render, "render");
script.render = render;
export {
script as s
};
//# sourceMappingURL=index-5HFeZax4.js.map

View File

@ -1,36 +1,16 @@
var __defProp = Object.defineProperty; var __defProp = Object.defineProperty;
var __name = (target, value) => __defProp(target, "name", { value, configurable: true }); var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
import { cp as script$2, A as createBaseVNode, f as openBlock, g as createElementBlock, m as mergeProps } from "./index-DIU5yZe9.js"; import { ct as script$1, H as createBaseVNode, o as openBlock, f as createElementBlock, D as mergeProps } from "./index-DjNHn37O.js";
var script$1 = { var script = {
name: "BarsIcon", name: "BarsIcon",
"extends": script$2 "extends": script$1
}; };
var _hoisted_1$1 = /* @__PURE__ */ createBaseVNode("path", { var _hoisted_1 = /* @__PURE__ */ createBaseVNode("path", {
"fill-rule": "evenodd", "fill-rule": "evenodd",
"clip-rule": "evenodd", "clip-rule": "evenodd",
d: "M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z", d: "M13.3226 3.6129H0.677419C0.497757 3.6129 0.325452 3.54152 0.198411 3.41448C0.0713707 3.28744 0 3.11514 0 2.93548C0 2.75581 0.0713707 2.58351 0.198411 2.45647C0.325452 2.32943 0.497757 2.25806 0.677419 2.25806H13.3226C13.5022 2.25806 13.6745 2.32943 13.8016 2.45647C13.9286 2.58351 14 2.75581 14 2.93548C14 3.11514 13.9286 3.28744 13.8016 3.41448C13.6745 3.54152 13.5022 3.6129 13.3226 3.6129ZM13.3226 7.67741H0.677419C0.497757 7.67741 0.325452 7.60604 0.198411 7.479C0.0713707 7.35196 0 7.17965 0 6.99999C0 6.82033 0.0713707 6.64802 0.198411 6.52098C0.325452 6.39394 0.497757 6.32257 0.677419 6.32257H13.3226C13.5022 6.32257 13.6745 6.39394 13.8016 6.52098C13.9286 6.64802 14 6.82033 14 6.99999C14 7.17965 13.9286 7.35196 13.8016 7.479C13.6745 7.60604 13.5022 7.67741 13.3226 7.67741ZM0.677419 11.7419H13.3226C13.5022 11.7419 13.6745 11.6706 13.8016 11.5435C13.9286 11.4165 14 11.2442 14 11.0645C14 10.8848 13.9286 10.7125 13.8016 10.5855C13.6745 10.4585 13.5022 10.3871 13.3226 10.3871H0.677419C0.497757 10.3871 0.325452 10.4585 0.198411 10.5855C0.0713707 10.7125 0 10.8848 0 11.0645C0 11.2442 0.0713707 11.4165 0.198411 11.5435C0.325452 11.6706 0.497757 11.7419 0.677419 11.7419Z",
fill: "currentColor" fill: "currentColor"
}, null, -1); }, null, -1);
var _hoisted_2$1 = [_hoisted_1$1];
function render$1(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({
width: "14",
height: "14",
viewBox: "0 0 14 14",
fill: "none",
xmlns: "http://www.w3.org/2000/svg"
}, _ctx.pti()), _hoisted_2$1, 16);
}
__name(render$1, "render$1");
script$1.render = render$1;
var script = {
name: "PlusIcon",
"extends": script$2
};
var _hoisted_1 = /* @__PURE__ */ createBaseVNode("path", {
d: "M7.67742 6.32258V0.677419C7.67742 0.497757 7.60605 0.325452 7.47901 0.198411C7.35197 0.0713707 7.17966 0 7 0C6.82034 0 6.64803 0.0713707 6.52099 0.198411C6.39395 0.325452 6.32258 0.497757 6.32258 0.677419V6.32258H0.677419C0.497757 6.32258 0.325452 6.39395 0.198411 6.52099C0.0713707 6.64803 0 6.82034 0 7C0 7.17966 0.0713707 7.35197 0.198411 7.47901C0.325452 7.60605 0.497757 7.67742 0.677419 7.67742H6.32258V13.3226C6.32492 13.5015 6.39704 13.6725 6.52358 13.799C6.65012 13.9255 6.82106 13.9977 7 14C7.17966 14 7.35197 13.9286 7.47901 13.8016C7.60605 13.6745 7.67742 13.5022 7.67742 13.3226V7.67742H13.3226C13.5022 7.67742 13.6745 7.60605 13.8016 7.47901C13.9286 7.35197 14 7.17966 14 7C13.9977 6.82106 13.9255 6.65012 13.799 6.52358C13.6725 6.39704 13.5015 6.32492 13.3226 6.32258H7.67742Z",
fill: "currentColor"
}, null, -1);
var _hoisted_2 = [_hoisted_1]; var _hoisted_2 = [_hoisted_1];
function render(_ctx, _cache, $props, $setup, $data, $options) { function render(_ctx, _cache, $props, $setup, $data, $options) {
return openBlock(), createElementBlock("svg", mergeProps({ return openBlock(), createElementBlock("svg", mergeProps({
@ -44,7 +24,6 @@ function render(_ctx, _cache, $props, $setup, $data, $options) {
__name(render, "render"); __name(render, "render");
script.render = render; script.render = render;
export { export {
script as a, script as s
script$1 as s
}; };
//# sourceMappingURL=index-d698Brhb.js.map //# sourceMappingURL=index-B-aVupP5.js.map

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More