mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Compare commits
3 Commits
83c0c43734
...
20a700a9f1
Author | SHA1 | Date | |
---|---|---|---|
|
20a700a9f1 | ||
|
1a864435f6 | ||
|
ce31337813 |
@ -5,19 +5,27 @@ import torch
|
|||||||
class DifferentialDiffusion():
|
class DifferentialDiffusion():
|
||||||
@classmethod
|
@classmethod
|
||||||
def INPUT_TYPES(s):
|
def INPUT_TYPES(s):
|
||||||
return {"required": {"model": ("MODEL", ),
|
return {
|
||||||
}}
|
"required": {
|
||||||
|
"model": ("MODEL", ),
|
||||||
|
"strength": ("FLOAT", {
|
||||||
|
"default": 1.0,
|
||||||
|
"min": 0.0,
|
||||||
|
"max": 1.0
|
||||||
|
}),
|
||||||
|
}
|
||||||
|
}
|
||||||
RETURN_TYPES = ("MODEL",)
|
RETURN_TYPES = ("MODEL",)
|
||||||
FUNCTION = "apply"
|
FUNCTION = "apply"
|
||||||
CATEGORY = "_for_testing"
|
CATEGORY = "_for_testing"
|
||||||
INIT = False
|
INIT = False
|
||||||
|
|
||||||
def apply(self, model):
|
def apply(self, model, strength=1.0):
|
||||||
model = model.clone()
|
model = model.clone()
|
||||||
model.set_model_denoise_mask_function(self.forward)
|
model.set_model_denoise_mask_function(lambda *args, **kwargs: self.forward(*args, **kwargs, strength=strength))
|
||||||
return (model,)
|
return (model, )
|
||||||
|
|
||||||
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
|
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict, strength: float):
|
||||||
model = extra_options["model"]
|
model = extra_options["model"]
|
||||||
step_sigmas = extra_options["sigmas"]
|
step_sigmas = extra_options["sigmas"]
|
||||||
sigma_to = model.inner_model.model_sampling.sigma_min
|
sigma_to = model.inner_model.model_sampling.sigma_min
|
||||||
@ -31,7 +39,15 @@ class DifferentialDiffusion():
|
|||||||
|
|
||||||
threshold = (current_ts - ts_to) / (ts_from - ts_to)
|
threshold = (current_ts - ts_to) / (ts_from - ts_to)
|
||||||
|
|
||||||
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
# Generate the binary mask based on the threshold
|
||||||
|
binary_mask = (denoise_mask >= threshold).to(denoise_mask.dtype)
|
||||||
|
|
||||||
|
# Blend binary mask with the original denoise_mask using strength
|
||||||
|
if strength and strength < 1:
|
||||||
|
blended_mask = strength * binary_mask + (1 - strength) * denoise_mask
|
||||||
|
return blended_mask
|
||||||
|
else:
|
||||||
|
return binary_mask
|
||||||
|
|
||||||
|
|
||||||
NODE_CLASS_MAPPINGS = {
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
Loading…
Reference in New Issue
Block a user