Compare commits

...

4 Commits

Author SHA1 Message Date
Pam
0817453286
Merge fa87f263ce into d0f3752e33 2025-01-07 15:33:14 -07:00
comfyanonymous
d0f3752e33 Properly calculate inner dim for t5 model.
This is required to support some different types of t5 models.
2025-01-07 17:33:03 -05:00
Dr.Lt.Data
c515bdf371
fixed: robust loading comfy.settings.json (#6383)
https://github.com/comfyanonymous/ComfyUI/issues/6371
2025-01-07 16:03:56 -05:00
Pam
fa87f263ce Fix nondeterministic results when add_noise==disable 2024-08-21 09:41:42 +05:00
5 changed files with 16 additions and 10 deletions

View File

@ -1,6 +1,7 @@
import os import os
import json import json
from aiohttp import web from aiohttp import web
import logging
class AppSettings(): class AppSettings():
@ -11,8 +12,12 @@ class AppSettings():
file = self.user_manager.get_request_user_filepath( file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json") request, "comfy.settings.json")
if os.path.isfile(file): if os.path.isfile(file):
try:
with open(file) as f: with open(file) as f:
return json.load(f) return json.load(f)
except:
logging.error(f"The user settings file is corrupted: {file}")
return {}
else: else:
return {} return {}

View File

@ -5,12 +5,15 @@ import comfy.utils
import numpy as np import numpy as np
import logging import logging
def prepare_noise(latent_image, seed, noise_inds=None): def prepare_noise(latent_image, seed, noise_inds=None, disable_noise=False):
""" """
creates random noise given a latent image and a seed. creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed optional arg skip can be used to skip and discard x number of noise generations for a given seed
""" """
generator = torch.manual_seed(seed) generator = torch.manual_seed(seed)
if disable_noise:
return torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
if noise_inds is None: if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu") return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")

View File

@ -227,8 +227,9 @@ class T5(torch.nn.Module):
super().__init__() super().__init__()
self.num_layers = config_dict["num_layers"] self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"] model_dim = config_dict["d_model"]
inner_dim = config_dict["d_kv"] * config_dict["num_heads"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations) self.encoder = T5Stack(self.num_layers, model_dim, inner_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["is_gated_act"], config_dict["num_heads"], config_dict["model_type"] != "umt5", dtype, device, operations)
self.dtype = dtype self.dtype = dtype
self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype) self.shared = operations.Embedding(config_dict["vocab_size"], model_dim, device=device, dtype=dtype)

View File

@ -418,7 +418,7 @@ class Noise_EmptyNoise:
def generate_noise(self, input_latent): def generate_noise(self, input_latent):
latent_image = input_latent["samples"] latent_image = input_latent["samples"]
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") return comfy.sample.prepare_noise(latent_image, self.seed, disable_noise=True)
class Noise_RandomNoise: class Noise_RandomNoise:

View File

@ -1485,11 +1485,8 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
latent_image = latent["samples"] latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image) latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds) noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds, disable_noise)
noise_mask = None noise_mask = None
if "noise_mask" in latent: if "noise_mask" in latent: