mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-01-25 15:55:18 +00:00
Compare commits
4 Commits
b8b21804a1
...
4793bf1ba2
Author | SHA1 | Date | |
---|---|---|---|
|
4793bf1ba2 | ||
|
ff838657fa | ||
|
c2bf857966 | ||
|
8fefe02cd1 |
@ -510,7 +510,7 @@ def get_sorted_list_via_attr(objects: list, attr: str) -> list:
|
||||
unique_attrs = {}
|
||||
for o in objects:
|
||||
val_attr = getattr(o, attr)
|
||||
attr_list: list = unique_attrs.get(val_attr, list())
|
||||
attr_list: list = unique_attrs.get(val_attr, [])
|
||||
attr_list.append(o)
|
||||
if val_attr not in unique_attrs:
|
||||
unique_attrs[val_attr] = attr_list
|
||||
|
@ -456,9 +456,8 @@ class LTXVModel(torch.nn.Module):
|
||||
x = self.patchify_proj(x)
|
||||
timestep = timestep * 1000.0
|
||||
|
||||
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
|
||||
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
|
||||
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
|
||||
if attention_mask is not None and not torch.is_floating_point(attention_mask):
|
||||
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
|
||||
|
||||
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)
|
||||
|
||||
|
@ -19,7 +19,7 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
|
||||
yield from ()
|
||||
|
||||
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
||||
log = dict()
|
||||
log = {}
|
||||
posterior = DiagonalGaussianDistribution(z)
|
||||
if self.sample:
|
||||
z = posterior.sample()
|
||||
@ -88,7 +88,7 @@ class AbstractAutoencoder(torch.nn.Module):
|
||||
def instantiate_optimizer_from_config(self, params, lr, cfg):
|
||||
logging.info(f"loading >>> {cfg['target']} <<< optimizer from config")
|
||||
return get_obj_from_str(cfg["target"])(
|
||||
params, lr=lr, **cfg.get("params", dict())
|
||||
params, lr=lr, **cfg.get("params", {})
|
||||
)
|
||||
|
||||
def configure_optimizers(self) -> Any:
|
||||
@ -129,7 +129,7 @@ class AutoencodingEngine(AbstractAutoencoder):
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, dict]]:
|
||||
z = self.encoder(x)
|
||||
if unregularized:
|
||||
return z, dict()
|
||||
return z, {}
|
||||
z, reg_log = self.regularization(z)
|
||||
if return_reg_log:
|
||||
return z, reg_log
|
||||
@ -191,7 +191,7 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
N = x.shape[0]
|
||||
bs = self.max_batch_size
|
||||
n_batches = int(math.ceil(N / bs))
|
||||
z = list()
|
||||
z = []
|
||||
for i_batch in range(n_batches):
|
||||
z_batch = self.encoder(x[i_batch * bs : (i_batch + 1) * bs])
|
||||
z_batch = self.quant_conv(z_batch)
|
||||
@ -211,7 +211,7 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
|
||||
N = z.shape[0]
|
||||
bs = self.max_batch_size
|
||||
n_batches = int(math.ceil(N / bs))
|
||||
dec = list()
|
||||
dec = []
|
||||
for i_batch in range(n_batches):
|
||||
dec_batch = self.post_quant_conv(z[i_batch * bs : (i_batch + 1) * bs])
|
||||
dec_batch = self.decoder(dec_batch, **decoder_kwargs)
|
||||
|
@ -13,7 +13,7 @@ def log_txt_as_img(wh, xc, size=10):
|
||||
# wh a tuple of (width, height)
|
||||
# xc a list of captions to plot
|
||||
b = len(xc)
|
||||
txts = list()
|
||||
txts = []
|
||||
for bi in range(b):
|
||||
txt = Image.new("RGB", wh, color="white")
|
||||
draw = ImageDraw.Draw(txt)
|
||||
@ -77,7 +77,7 @@ def instantiate_from_config(config):
|
||||
elif config == "__is_unconditional__":
|
||||
return None
|
||||
raise KeyError("Expected key `target` to instantiate.")
|
||||
return get_obj_from_str(config["target"])(**config.get("params", dict()))
|
||||
return get_obj_from_str(config["target"])(**config.get("params", {}))
|
||||
|
||||
|
||||
def get_obj_from_str(string, reload=False):
|
||||
@ -106,9 +106,9 @@ class AdamWwithEMAandWings(optim.Optimizer):
|
||||
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||
if not 0.0 <= ema_decay <= 1.0:
|
||||
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
||||
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
||||
ema_power=ema_power, param_names=param_names)
|
||||
defaults = {"lr": lr, "betas": betas, "eps": eps,
|
||||
"weight_decay": weight_decay, "amsgrad": amsgrad, "ema_decay": ema_decay,
|
||||
"ema_power": ema_power, "param_names": param_names}
|
||||
super().__init__(params, defaults)
|
||||
|
||||
def __setstate__(self, state):
|
||||
|
@ -185,7 +185,7 @@ def finalize_default_conds(model: 'BaseModel', hooked_to_run: dict[comfy.hooks.H
|
||||
p = p._replace(mult=mult)
|
||||
if p.hooks is not None:
|
||||
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run.setdefault(p.hooks, [])
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
|
||||
def calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Tensor, timestep, model_options):
|
||||
@ -220,7 +220,7 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
|
||||
continue
|
||||
if p.hooks is not None:
|
||||
model.current_patcher.prepare_hook_patches_current_keyframe(timestep, p.hooks, model_options)
|
||||
hooked_to_run.setdefault(p.hooks, list())
|
||||
hooked_to_run.setdefault(p.hooks, [])
|
||||
hooked_to_run[p.hooks] += [(p, i)]
|
||||
default_conds.append(default_c)
|
||||
|
||||
|
@ -26,7 +26,7 @@ def gen_empty_tokens(special_tokens, length):
|
||||
|
||||
class ClipTokenWeightEncoder:
|
||||
def encode_token_weights(self, token_weight_pairs):
|
||||
to_encode = list()
|
||||
to_encode = []
|
||||
max_token_len = 0
|
||||
has_weights = False
|
||||
for x in token_weight_pairs:
|
||||
|
@ -164,7 +164,7 @@ class SaveAudio:
|
||||
def save_audio(self, audio, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
results = list()
|
||||
results = []
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
|
@ -99,7 +99,7 @@ class SaveAnimatedWEBP:
|
||||
method = self.methods.get(method)
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
results = []
|
||||
pil_images = []
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
@ -160,7 +160,7 @@ class SaveAnimatedPNG:
|
||||
def save_images(self, images, fps, compress_level, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
results = []
|
||||
pil_images = []
|
||||
for image in images:
|
||||
i = 255. * image.cpu().numpy()
|
||||
|
@ -232,7 +232,7 @@ def get_output_data(obj, input_data_all, execution_block_cb=None, pre_execute_cb
|
||||
output = merge_result_data(results, obj)
|
||||
else:
|
||||
output = []
|
||||
ui = dict()
|
||||
ui = {}
|
||||
if len(uis) > 0:
|
||||
ui = {k: [y for x in uis for y in x[k]] for k in uis[0].keys()}
|
||||
return output, ui, has_subgraph
|
||||
|
4
nodes.py
4
nodes.py
@ -477,7 +477,7 @@ class SaveLatent:
|
||||
|
||||
file = f"{filename}_{counter:05}_.latent"
|
||||
|
||||
results = list()
|
||||
results = []
|
||||
results.append({
|
||||
"filename": file,
|
||||
"subfolder": subfolder,
|
||||
@ -1596,7 +1596,7 @@ class SaveImage:
|
||||
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
filename_prefix += self.prefix_append
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
||||
results = list()
|
||||
results = []
|
||||
for (batch_number, image) in enumerate(images):
|
||||
i = 255. * image.cpu().numpy()
|
||||
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
||||
|
@ -1,15 +1,17 @@
|
||||
target-version = "py39"
|
||||
|
||||
# Disable all rules by default
|
||||
lint.ignore = ["ALL"]
|
||||
|
||||
# Enable specific rules
|
||||
# Enable specific rules, see all rules here: https://docs.astral.sh/ruff/rules/
|
||||
lint.select = [
|
||||
"S307", # suspicious-eval-usage
|
||||
"S102", # exec
|
||||
"T", # print-usage
|
||||
"W",
|
||||
# The "F" series in Ruff stands for "Pyflakes" rules, which catch various Python syntax errors and undefined names.
|
||||
# See all rules here: https://docs.astral.sh/ruff/rules/#pyflakes-f
|
||||
"F",
|
||||
"C408", # unnecessary dict(), list() or tuple() calls that can be rewritten as empty literals.
|
||||
]
|
||||
|
||||
exclude = ["*.ipynb"]
|
||||
|
@ -171,7 +171,7 @@ class PromptServer():
|
||||
|
||||
max_upload_size = round(args.max_upload_size * 1024 * 1024)
|
||||
self.app = web.Application(client_max_size=max_upload_size, middlewares=middlewares)
|
||||
self.sockets = dict()
|
||||
self.sockets = {}
|
||||
self.web_root = (
|
||||
FrontendManager.init_frontend(args.front_end_version)
|
||||
if args.front_end_root is None
|
||||
|
Loading…
Reference in New Issue
Block a user