Compare commits

...

3 Commits

Author SHA1 Message Date
Gremlation
e0aabb3edf
Merge ab6cc064a8 into ff838657fa 2025-01-09 09:12:29 -05:00
comfyanonymous
ff838657fa Cleaner handling of attention mask in ltxv model code. 2025-01-09 07:12:03 -05:00
Gremlation
ab6cc064a8 Drop support for Python 3.8 2025-01-02 22:25:22 +08:00
3 changed files with 4 additions and 8 deletions

View File

@ -18,7 +18,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.8", "3.9", "3.10", "3.11"]
python-version: ["3.9", "3.10", "3.11", "3.12"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}

View File

@ -1,11 +1,8 @@
import torch
import math
from math import lcm
import comfy.utils
def lcm(a, b): #TODO: eventually replace by math.lcm (added in python3.9)
return abs(a*b) // math.gcd(a, b)
class CONDRegular:
def __init__(self, cond):
self.cond = cond

View File

@ -456,9 +456,8 @@ class LTXVModel(torch.nn.Module):
x = self.patchify_proj(x)
timestep = timestep * 1000.0
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)