Compare commits

...

3 Commits

Author SHA1 Message Date
Pam
4cc3dffb20
Merge fa87f263ce into ff838657fa 2025-01-09 05:12:35 -07:00
comfyanonymous
ff838657fa Cleaner handling of attention mask in ltxv model code. 2025-01-09 07:12:03 -05:00
Pam
fa87f263ce Fix nondeterministic results when add_noise==disable 2024-08-21 09:41:42 +05:00
4 changed files with 9 additions and 10 deletions

View File

@ -456,9 +456,8 @@ class LTXVModel(torch.nn.Module):
x = self.patchify_proj(x)
timestep = timestep * 1000.0
attention_mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1]))
attention_mask = attention_mask.masked_fill(attention_mask.to(torch.bool), float("-inf")) # not sure about this
# attention_mask = (context != 0).any(dim=2).to(dtype=x.dtype)
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(indices_grid, dim=self.inner_dim, out_dtype=x.dtype)

View File

@ -5,12 +5,15 @@ import comfy.utils
import numpy as np
import logging
def prepare_noise(latent_image, seed, noise_inds=None):
def prepare_noise(latent_image, seed, noise_inds=None, disable_noise=False):
"""
creates random noise given a latent image and a seed.
optional arg skip can be used to skip and discard x number of noise generations for a given seed
"""
generator = torch.manual_seed(seed)
if disable_noise:
return torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
if noise_inds is None:
return torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=generator, device="cpu")

View File

@ -418,7 +418,7 @@ class Noise_EmptyNoise:
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
return comfy.sample.prepare_noise(latent_image, self.seed, disable_noise=True)
class Noise_RandomNoise:

View File

@ -1485,11 +1485,8 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
latent_image = latent["samples"]
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
if disable_noise:
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
else:
batch_inds = latent["batch_index"] if "batch_index" in latent else None
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds, disable_noise)
noise_mask = None
if "noise_mask" in latent: