# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional import logging import numpy as np import torch from einops import rearrange, repeat from einops.layers.torch import Rearrange from torch import nn from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm from comfy.ldm.modules.attention import optimized_attention def apply_rotary_pos_emb( t: torch.Tensor, freqs: torch.Tensor, ) -> torch.Tensor: t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float() t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1] t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t) return t_out def get_normalization(name: str, channels: int, weight_args={}): if name == "I": return nn.Identity() elif name == "R": return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args) else: raise ValueError(f"Normalization {name} not found") class BaseAttentionOp(nn.Module): def __init__(self): super().__init__() class Attention(nn.Module): """ Generalized attention impl. Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided. If `context_dim` is None, self-attention is assumed. Parameters: query_dim (int): Dimension of each query vector. context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed. heads (int, optional): Number of attention heads. Defaults to 8. dim_head (int, optional): Dimension of each head. Defaults to 64. dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0. attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default. qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False. out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False. qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections. Defaults to "SSI". qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections. Defaults to 'per_head'. Only support 'per_head'. Examples: >>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1) >>> query = torch.randn(10, 128) # Batch size of 10 >>> context = torch.randn(10, 256) # Batch size of 10 >>> output = attn(query, context) # Perform the attention operation Note: https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 """ def __init__( self, query_dim: int, context_dim=None, heads=8, dim_head=64, dropout=0.0, attn_op: Optional[BaseAttentionOp] = None, qkv_bias: bool = False, out_bias: bool = False, qkv_norm: str = "SSI", qkv_norm_mode: str = "per_head", backend: str = "transformer_engine", qkv_format: str = "bshd", weight_args={}, operations=None, ) -> None: super().__init__() self.is_selfattn = context_dim is None # self attention inner_dim = dim_head * heads context_dim = query_dim if context_dim is None else context_dim self.heads = heads self.dim_head = dim_head self.qkv_norm_mode = qkv_norm_mode self.qkv_format = qkv_format if self.qkv_norm_mode == "per_head": norm_dim = dim_head else: raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'") self.backend = backend self.to_q = nn.Sequential( operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args), get_normalization(qkv_norm[0], norm_dim), ) self.to_k = nn.Sequential( operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), get_normalization(qkv_norm[1], norm_dim), ) self.to_v = nn.Sequential( operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args), get_normalization(qkv_norm[2], norm_dim), ) self.to_out = nn.Sequential( operations.Linear(inner_dim, query_dim, bias=out_bias, **weight_args), nn.Dropout(dropout), ) def cal_qkv( self, x, context=None, mask=None, rope_emb=None, **kwargs ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: del kwargs """ self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers. Before 07/24/2024, these modules normalize across all heads. After 07/24/2024, to support tensor parallelism and follow the common practice in the community, we support to normalize per head. To keep the checkpoint copatibility with the previous code, we keep the nn.Sequential but call the projection and the normalization layers separately. We use a flag `self.qkv_norm_mode` to control the normalization behavior. The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head. """ if self.qkv_norm_mode == "per_head": q = self.to_q[0](x) context = x if context is None else context k = self.to_k[0](context) v = self.to_v[0](context) q, k, v = map( lambda t: rearrange(t, "s b (n c) -> b n s c", n=self.heads, c=self.dim_head), (q, k, v), ) else: raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'") q = self.to_q[1](q) k = self.to_k[1](k) v = self.to_v[1](v) if self.is_selfattn and rope_emb is not None: # only apply to self-attention! # apply_rotary_pos_emb inlined q_shape = q.shape q = q.reshape(*q.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2) q = rope_emb[..., 0] * q[..., 0] + rope_emb[..., 1] * q[..., 1] q = q.movedim(-1, -2).reshape(*q_shape).to(x.dtype) # apply_rotary_pos_emb inlined k_shape = k.shape k = k.reshape(*k.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2) k = rope_emb[..., 0] * k[..., 0] + rope_emb[..., 1] * k[..., 1] k = k.movedim(-1, -2).reshape(*k_shape).to(x.dtype) return q, k, v def forward( self, x, context=None, mask=None, rope_emb=None, **kwargs, ): """ Args: x (Tensor): The query tensor of shape [B, Mq, K] context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None """ q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs) out = optimized_attention(q, k, v, self.heads, skip_reshape=True, mask=mask, skip_output_reshape=True) del q, k, v out = rearrange(out, " b n s c -> s b (n c)") return self.to_out(out) class FeedForward(nn.Module): """ Transformer FFN with optional gating Parameters: d_model (int): Dimensionality of input features. d_ff (int): Dimensionality of the hidden layer. dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1. activation (callable, optional): The activation function applied after the first linear layer. Defaults to nn.ReLU(). is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer. Defaults to False. bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True. Example: >>> ff = FeedForward(d_model=512, d_ff=2048) >>> x = torch.randn(64, 10, 512) # Example input tensor >>> output = ff(x) >>> print(output.shape) # Expected shape: (64, 10, 512) """ def __init__( self, d_model: int, d_ff: int, dropout: float = 0.1, activation=nn.ReLU(), is_gated: bool = False, bias: bool = False, weight_args={}, operations=None, ) -> None: super().__init__() self.layer1 = operations.Linear(d_model, d_ff, bias=bias, **weight_args) self.layer2 = operations.Linear(d_ff, d_model, bias=bias, **weight_args) self.dropout = nn.Dropout(dropout) self.activation = activation self.is_gated = is_gated if is_gated: self.linear_gate = operations.Linear(d_model, d_ff, bias=False, **weight_args) def forward(self, x: torch.Tensor): g = self.activation(self.layer1(x)) if self.is_gated: x = g * self.linear_gate(x) else: x = g assert self.dropout.p == 0.0, "we skip dropout" return self.layer2(x) class GPT2FeedForward(FeedForward): def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False, weight_args={}, operations=None): super().__init__( d_model=d_model, d_ff=d_ff, dropout=dropout, activation=nn.GELU(), is_gated=False, bias=bias, weight_args=weight_args, operations=operations, ) def forward(self, x: torch.Tensor): assert self.dropout.p == 0.0, "we skip dropout" x = self.layer1(x) x = self.activation(x) x = self.layer2(x) return x def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) class Timesteps(nn.Module): def __init__(self, num_channels): super().__init__() self.num_channels = num_channels def forward(self, timesteps): half_dim = self.num_channels // 2 exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - 0.0) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] sin_emb = torch.sin(emb) cos_emb = torch.cos(emb) emb = torch.cat([cos_emb, sin_emb], dim=-1) return emb class TimestepEmbedding(nn.Module): def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, weight_args={}, operations=None): super().__init__() logging.debug( f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility." ) self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, **weight_args) self.activation = nn.SiLU() self.use_adaln_lora = use_adaln_lora if use_adaln_lora: self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, **weight_args) else: self.linear_2 = operations.Linear(out_features, out_features, bias=True, **weight_args) def forward(self, sample: torch.Tensor) -> torch.Tensor: emb = self.linear_1(sample) emb = self.activation(emb) emb = self.linear_2(emb) if self.use_adaln_lora: adaln_lora_B_3D = emb emb_B_D = sample else: emb_B_D = emb adaln_lora_B_3D = None return emb_B_D, adaln_lora_B_3D class FourierFeatures(nn.Module): """ Implements a layer that generates Fourier features from input tensors, based on randomly sampled frequencies and phases. This can help in learning high-frequency functions in low-dimensional problems. [B] -> [B, D] Parameters: num_channels (int): The number of Fourier features to generate. bandwidth (float, optional): The scaling factor for the frequency of the Fourier features. Defaults to 1. normalize (bool, optional): If set to True, the outputs are scaled by sqrt(2), usually to normalize the variance of the features. Defaults to False. Example: >>> layer = FourierFeatures(num_channels=256, bandwidth=0.5, normalize=True) >>> x = torch.randn(10, 256) # Example input tensor >>> output = layer(x) >>> print(output.shape) # Expected shape: (10, 256) """ def __init__(self, num_channels, bandwidth=1, normalize=False): super().__init__() self.register_buffer("freqs", 2 * np.pi * bandwidth * torch.randn(num_channels), persistent=True) self.register_buffer("phases", 2 * np.pi * torch.rand(num_channels), persistent=True) self.gain = np.sqrt(2) if normalize else 1 def forward(self, x, gain: float = 1.0): """ Apply the Fourier feature transformation to the input tensor. Args: x (torch.Tensor): The input tensor. gain (float, optional): An additional gain factor applied during the forward pass. Defaults to 1. Returns: torch.Tensor: The transformed tensor, with Fourier features applied. """ in_dtype = x.dtype x = x.to(torch.float32).ger(self.freqs.to(torch.float32)).add(self.phases.to(torch.float32)) x = x.cos().mul(self.gain * gain).to(in_dtype) return x class PatchEmbed(nn.Module): """ PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers, depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions, making it suitable for video and image processing tasks. It supports dividing the input into patches and embedding each patch into a vector of size `out_channels`. Parameters: - spatial_patch_size (int): The size of each spatial patch. - temporal_patch_size (int): The size of each temporal patch. - in_channels (int): Number of input channels. Default: 3. - out_channels (int): The dimension of the embedding vector for each patch. Default: 768. - bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True. """ def __init__( self, spatial_patch_size, temporal_patch_size, in_channels=3, out_channels=768, bias=True, weight_args={}, operations=None, ): super().__init__() self.spatial_patch_size = spatial_patch_size self.temporal_patch_size = temporal_patch_size self.proj = nn.Sequential( Rearrange( "b c (t r) (h m) (w n) -> b t h w (c r m n)", r=temporal_patch_size, m=spatial_patch_size, n=spatial_patch_size, ), operations.Linear( in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=bias, **weight_args ), ) self.out = nn.Identity() def forward(self, x): """ Forward pass of the PatchEmbed module. Parameters: - x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where B is the batch size, C is the number of channels, T is the temporal dimension, H is the height, and W is the width of the input. Returns: - torch.Tensor: The embedded patches as a tensor, with shape b t h w c. """ assert x.dim() == 5 _, _, T, H, W = x.shape assert H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0 assert T % self.temporal_patch_size == 0 x = self.proj(x) return self.out(x) class FinalLayer(nn.Module): """ The final layer of video DiT. """ def __init__( self, hidden_size, spatial_patch_size, temporal_patch_size, out_channels, use_adaln_lora: bool = False, adaln_lora_dim: int = 256, weight_args={}, operations=None, ): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **weight_args) self.linear = operations.Linear( hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, **weight_args ) self.hidden_size = hidden_size self.n_adaln_chunks = 2 self.use_adaln_lora = use_adaln_lora if use_adaln_lora: self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, adaln_lora_dim, bias=False, **weight_args), operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, **weight_args), ) else: self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, **weight_args) ) def forward( self, x_BT_HW_D, emb_B_D, adaln_lora_B_3D: Optional[torch.Tensor] = None, ): if self.use_adaln_lora: assert adaln_lora_B_3D is not None shift_B_D, scale_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D[:, : 2 * self.hidden_size]).chunk( 2, dim=1 ) else: shift_B_D, scale_B_D = self.adaLN_modulation(emb_B_D).chunk(2, dim=1) B = emb_B_D.shape[0] T = x_BT_HW_D.shape[0] // B shift_BT_D, scale_BT_D = repeat(shift_B_D, "b d -> (b t) d", t=T), repeat(scale_B_D, "b d -> (b t) d", t=T) x_BT_HW_D = modulate(self.norm_final(x_BT_HW_D), shift_BT_D, scale_BT_D) x_BT_HW_D = self.linear(x_BT_HW_D) return x_BT_HW_D class VideoAttn(nn.Module): """ Implements video attention with optional cross-attention capabilities. This module processes video features while maintaining their spatio-temporal structure. It can perform self-attention within the video features or cross-attention with external context features. Parameters: x_dim (int): Dimension of input feature vectors context_dim (Optional[int]): Dimension of context features for cross-attention. None for self-attention num_heads (int): Number of attention heads bias (bool): Whether to include bias in attention projections. Default: False qkv_norm_mode (str): Normalization mode for query/key/value projections. Must be "per_head". Default: "per_head" x_format (str): Format of input tensor. Must be "BTHWD". Default: "BTHWD" Input shape: - x: (T, H, W, B, D) video features - context (optional): (M, B, D) context features for cross-attention where: T: temporal dimension H: height W: width B: batch size D: feature dimension M: context sequence length """ def __init__( self, x_dim: int, context_dim: Optional[int], num_heads: int, bias: bool = False, qkv_norm_mode: str = "per_head", x_format: str = "BTHWD", weight_args={}, operations=None, ) -> None: super().__init__() self.x_format = x_format self.attn = Attention( x_dim, context_dim, num_heads, x_dim // num_heads, qkv_bias=bias, qkv_norm="RRI", out_bias=bias, qkv_norm_mode=qkv_norm_mode, qkv_format="sbhd", weight_args=weight_args, operations=operations, ) def forward( self, x: torch.Tensor, context: Optional[torch.Tensor] = None, crossattn_mask: Optional[torch.Tensor] = None, rope_emb_L_1_1_D: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Forward pass for video attention. Args: x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D) representing batches of video data. context (Tensor): Context tensor of shape (B, M, D) or (M, B, D), where M is the sequence length of the context. crossattn_mask (Optional[Tensor]): An optional mask for cross-attention mechanisms. rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. Returns: Tensor: The output tensor with applied attention, maintaining the input shape. """ x_T_H_W_B_D = x context_M_B_D = context T, H, W, B, D = x_T_H_W_B_D.shape x_THW_B_D = rearrange(x_T_H_W_B_D, "t h w b d -> (t h w) b d") x_THW_B_D = self.attn( x_THW_B_D, context_M_B_D, crossattn_mask, rope_emb=rope_emb_L_1_1_D, ) x_T_H_W_B_D = rearrange(x_THW_B_D, "(t h w) b d -> t h w b d", h=H, w=W) return x_T_H_W_B_D def adaln_norm_state(norm_state, x, scale, shift): normalized = norm_state(x) return normalized * (1 + scale) + shift class DITBuildingBlock(nn.Module): """ A building block for the DiT (Diffusion Transformer) architecture that supports different types of attention and MLP operations with adaptive layer normalization. Parameters: block_type (str): Type of block - one of: - "cross_attn"/"ca": Cross-attention - "full_attn"/"fa": Full self-attention - "mlp"/"ff": MLP/feedforward block x_dim (int): Dimension of input features context_dim (Optional[int]): Dimension of context features for cross-attention num_heads (int): Number of attention heads mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0 bias (bool): Whether to use bias in layers. Default: False mlp_dropout (float): Dropout rate for MLP. Default: 0.0 qkv_norm_mode (str): QKV normalization mode. Default: "per_head" x_format (str): Input tensor format. Default: "BTHWD" use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256 """ def __init__( self, block_type: str, x_dim: int, context_dim: Optional[int], num_heads: int, mlp_ratio: float = 4.0, bias: bool = False, mlp_dropout: float = 0.0, qkv_norm_mode: str = "per_head", x_format: str = "BTHWD", use_adaln_lora: bool = False, adaln_lora_dim: int = 256, weight_args={}, operations=None ) -> None: block_type = block_type.lower() super().__init__() self.x_format = x_format if block_type in ["cross_attn", "ca"]: self.block = VideoAttn( x_dim, context_dim, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations, ) elif block_type in ["full_attn", "fa"]: self.block = VideoAttn( x_dim, None, num_heads, bias=bias, qkv_norm_mode=qkv_norm_mode, x_format=self.x_format, weight_args=weight_args, operations=operations ) elif block_type in ["mlp", "ff"]: self.block = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), dropout=mlp_dropout, bias=bias, weight_args=weight_args, operations=operations) else: raise ValueError(f"Unknown block type: {block_type}") self.block_type = block_type self.use_adaln_lora = use_adaln_lora self.norm_state = nn.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6) self.n_adaln_chunks = 3 if use_adaln_lora: self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(x_dim, adaln_lora_dim, bias=False, **weight_args), operations.Linear(adaln_lora_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args), ) else: self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, self.n_adaln_chunks * x_dim, bias=False, **weight_args)) def forward( self, x: torch.Tensor, emb_B_D: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, rope_emb_L_1_1_D: Optional[torch.Tensor] = None, adaln_lora_B_3D: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Forward pass for dynamically configured blocks with adaptive normalization. Args: x (Tensor): Input tensor of shape (B, T, H, W, D) or (T, H, W, B, D). emb_B_D (Tensor): Embedding tensor for adaptive layer normalization modulation. crossattn_emb (Tensor): Tensor for cross-attention blocks. crossattn_mask (Optional[Tensor]): Optional mask for cross-attention. rope_emb_L_1_1_D (Optional[Tensor]): Rotary positional embedding tensor of shape (L, 1, 1, D). L == THW for current video training. Returns: Tensor: The output tensor after processing through the configured block and adaptive normalization. """ if self.use_adaln_lora: shift_B_D, scale_B_D, gate_B_D = (self.adaLN_modulation(emb_B_D) + adaln_lora_B_3D).chunk( self.n_adaln_chunks, dim=1 ) else: shift_B_D, scale_B_D, gate_B_D = self.adaLN_modulation(emb_B_D).chunk(self.n_adaln_chunks, dim=1) shift_1_1_1_B_D, scale_1_1_1_B_D, gate_1_1_1_B_D = ( shift_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), scale_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), gate_B_D.unsqueeze(0).unsqueeze(0).unsqueeze(0), ) if self.block_type in ["mlp", "ff"]: x = x + gate_1_1_1_B_D * self.block( adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), ) elif self.block_type in ["full_attn", "fa"]: x = x + gate_1_1_1_B_D * self.block( adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), context=None, rope_emb_L_1_1_D=rope_emb_L_1_1_D, ) elif self.block_type in ["cross_attn", "ca"]: x = x + gate_1_1_1_B_D * self.block( adaln_norm_state(self.norm_state, x, scale_1_1_1_B_D, shift_1_1_1_B_D), context=crossattn_emb, crossattn_mask=crossattn_mask, rope_emb_L_1_1_D=rope_emb_L_1_1_D, ) else: raise ValueError(f"Unknown block type: {self.block_type}") return x class GeneralDITTransformerBlock(nn.Module): """ A wrapper module that manages a sequence of DITBuildingBlocks to form a complete transformer layer. Each block in the sequence is specified by a block configuration string. Parameters: x_dim (int): Dimension of input features context_dim (int): Dimension of context features for cross-attention blocks num_heads (int): Number of attention heads block_config (str): String specifying block sequence (e.g. "ca-fa-mlp" for cross-attention, full-attention, then MLP) mlp_ratio (float): MLP hidden dimension multiplier. Default: 4.0 x_format (str): Input tensor format. Default: "BTHWD" use_adaln_lora (bool): Whether to use AdaLN-LoRA. Default: False adaln_lora_dim (int): Dimension for AdaLN-LoRA. Default: 256 The block_config string uses "-" to separate block types: - "ca"/"cross_attn": Cross-attention block - "fa"/"full_attn": Full self-attention block - "mlp"/"ff": MLP/feedforward block Example: block_config = "ca-fa-mlp" creates a sequence of: 1. Cross-attention block 2. Full self-attention block 3. MLP block """ def __init__( self, x_dim: int, context_dim: int, num_heads: int, block_config: str, mlp_ratio: float = 4.0, x_format: str = "BTHWD", use_adaln_lora: bool = False, adaln_lora_dim: int = 256, weight_args={}, operations=None ): super().__init__() self.blocks = nn.ModuleList() self.x_format = x_format for block_type in block_config.split("-"): self.blocks.append( DITBuildingBlock( block_type, x_dim, context_dim, num_heads, mlp_ratio, x_format=self.x_format, use_adaln_lora=use_adaln_lora, adaln_lora_dim=adaln_lora_dim, weight_args=weight_args, operations=operations, ) ) def forward( self, x: torch.Tensor, emb_B_D: torch.Tensor, crossattn_emb: torch.Tensor, crossattn_mask: Optional[torch.Tensor] = None, rope_emb_L_1_1_D: Optional[torch.Tensor] = None, adaln_lora_B_3D: Optional[torch.Tensor] = None, ) -> torch.Tensor: for block in self.blocks: x = block( x, emb_B_D, crossattn_emb, crossattn_mask, rope_emb_L_1_1_D=rope_emb_L_1_1_D, adaln_lora_B_3D=adaln_lora_B_3D, ) return x