# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import torch from einops import rearrange, repeat from torch import nn import math def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor: """ Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted. Args: x (torch.Tensor): The input tensor to normalize. dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first. eps (float, optional): A small constant to ensure numerical stability during division. Returns: torch.Tensor: The normalized tensor. """ if dim is None: dim = list(range(1, x.ndim)) norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32) norm = torch.add(eps, norm, alpha=math.sqrt(norm.numel() / x.numel())) return x / norm.to(x.dtype) class VideoPositionEmb(nn.Module): def forward(self, x_B_T_H_W_C: torch.Tensor, fps=Optional[torch.Tensor], device=None) -> torch.Tensor: """ It delegates the embedding generation to generate_embeddings function. """ B_T_H_W_C = x_B_T_H_W_C.shape embeddings = self.generate_embeddings(B_T_H_W_C, fps=fps, device=device) return embeddings def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None): raise NotImplementedError class VideoRopePosition3DEmb(VideoPositionEmb): def __init__( self, *, # enforce keyword arguments head_dim: int, len_h: int, len_w: int, len_t: int, base_fps: int = 24, h_extrapolation_ratio: float = 1.0, w_extrapolation_ratio: float = 1.0, t_extrapolation_ratio: float = 1.0, device=None, **kwargs, # used for compatibility with other positional embeddings; unused in this class ): del kwargs super().__init__() self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device)) self.base_fps = base_fps self.max_h = len_h self.max_w = len_w dim = head_dim dim_h = dim // 6 * 2 dim_w = dim_h dim_t = dim - 2 * dim_h assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}" self.register_buffer( "dim_spatial_range", torch.arange(0, dim_h, 2, device=device)[: (dim_h // 2)].float() / dim_h, persistent=False, ) self.register_buffer( "dim_temporal_range", torch.arange(0, dim_t, 2, device=device)[: (dim_t // 2)].float() / dim_t, persistent=False, ) self.h_ntk_factor = h_extrapolation_ratio ** (dim_h / (dim_h - 2)) self.w_ntk_factor = w_extrapolation_ratio ** (dim_w / (dim_w - 2)) self.t_ntk_factor = t_extrapolation_ratio ** (dim_t / (dim_t - 2)) def generate_embeddings( self, B_T_H_W_C: torch.Size, fps: Optional[torch.Tensor] = None, h_ntk_factor: Optional[float] = None, w_ntk_factor: Optional[float] = None, t_ntk_factor: Optional[float] = None, device=None, ): """ Generate embeddings for the given input size. Args: B_T_H_W_C (torch.Size): Input tensor size (Batch, Time, Height, Width, Channels). fps (Optional[torch.Tensor], optional): Frames per second. Defaults to None. h_ntk_factor (Optional[float], optional): Height NTK factor. If None, uses self.h_ntk_factor. w_ntk_factor (Optional[float], optional): Width NTK factor. If None, uses self.w_ntk_factor. t_ntk_factor (Optional[float], optional): Time NTK factor. If None, uses self.t_ntk_factor. Returns: Not specified in the original code snippet. """ h_ntk_factor = h_ntk_factor if h_ntk_factor is not None else self.h_ntk_factor w_ntk_factor = w_ntk_factor if w_ntk_factor is not None else self.w_ntk_factor t_ntk_factor = t_ntk_factor if t_ntk_factor is not None else self.t_ntk_factor h_theta = 10000.0 * h_ntk_factor w_theta = 10000.0 * w_ntk_factor t_theta = 10000.0 * t_ntk_factor h_spatial_freqs = 1.0 / (h_theta**self.dim_spatial_range.to(device=device)) w_spatial_freqs = 1.0 / (w_theta**self.dim_spatial_range.to(device=device)) temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device)) B, T, H, W, _ = B_T_H_W_C uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max()) assert ( uniform_fps or B == 1 or T == 1 ), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1" assert ( H <= self.max_h and W <= self.max_w ), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})" half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs) half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs) # apply sequence scaling in temporal dimension if fps is None: # image case half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs) else: half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs) half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1) half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1) half_emb_t = torch.stack([torch.cos(half_emb_t), -torch.sin(half_emb_t), torch.sin(half_emb_t), torch.cos(half_emb_t)], dim=-1) em_T_H_W_D = torch.cat( [ repeat(half_emb_t, "t d x -> t h w d x", h=H, w=W), repeat(half_emb_h, "h d x -> t h w d x", t=T, w=W), repeat(half_emb_w, "w d x -> t h w d x", t=T, h=H), ] , dim=-2, ) return rearrange(em_T_H_W_D, "t h w d (i j) -> (t h w) d i j", i=2, j=2).float() class LearnablePosEmbAxis(VideoPositionEmb): def __init__( self, *, # enforce keyword arguments interpolation: str, model_channels: int, len_h: int, len_w: int, len_t: int, device=None, **kwargs, ): """ Args: interpolation (str): we curretly only support "crop", ideally when we need extrapolation capacity, we should adjust frequency or other more advanced methods. they are not implemented yet. """ del kwargs # unused super().__init__() self.interpolation = interpolation assert self.interpolation in ["crop"], f"Unknown interpolation method {self.interpolation}" self.pos_emb_h = nn.Parameter(torch.empty(len_h, model_channels, device=device)) self.pos_emb_w = nn.Parameter(torch.empty(len_w, model_channels, device=device)) self.pos_emb_t = nn.Parameter(torch.empty(len_t, model_channels, device=device)) def generate_embeddings(self, B_T_H_W_C: torch.Size, fps=Optional[torch.Tensor], device=None) -> torch.Tensor: B, T, H, W, _ = B_T_H_W_C if self.interpolation == "crop": emb_h_H = self.pos_emb_h[:H].to(device=device) emb_w_W = self.pos_emb_w[:W].to(device=device) emb_t_T = self.pos_emb_t[:T].to(device=device) emb = ( repeat(emb_t_T, "t d-> b t h w d", b=B, h=H, w=W) + repeat(emb_h_H, "h d-> b t h w d", b=B, t=T, w=W) + repeat(emb_w_W, "w d-> b t h w d", b=B, t=T, h=H) ) assert list(emb.shape)[:4] == [B, T, H, W], f"bad shape: {list(emb.shape)[:4]} != {B, T, H, W}" else: raise ValueError(f"Unknown interpolation method {self.interpolation}") return normalize(emb, dim=-1, eps=1e-6)