import nodes import node_helpers import torch import comfy.model_management import comfy.utils class WanImageToVideo: @classmethod def INPUT_TYPES(s): return {"required": {"positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "vae": ("VAE", ), "width": ("INT", {"default": 1280, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "height": ("INT", {"default": 720, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}), "length": ("INT", {"default": 121, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}), }, "optional": {"clip_vision_output": ("CLIP_VISION_OUTPUT", ), "start_image": ("IMAGE", ), }} RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT") RETURN_NAMES = ("positive", "negative", "latent") FUNCTION = "encode" CATEGORY = "conditioning/video_models" def encode(self, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None): latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) if start_image is not None: start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5 image[:start_image.shape[0]] = start_image concat_latent_image = vae.encode(image[:, :, :, :3]) mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0 positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask}) if clip_vision_output is not None: positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output}) negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output}) out_latent = {} out_latent["samples"] = latent return (positive, negative, out_latent) NODE_CLASS_MAPPINGS = { "WanImageToVideo": WanImageToVideo, }