import torch from contextlib import contextmanager class Linear(torch.nn.Module): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None: factory_kwargs = {'device': device, 'dtype': dtype} super().__init__() self.in_features = in_features self.out_features = out_features self.weight = torch.nn.Parameter(torch.empty((out_features, in_features), **factory_kwargs)) if bias: self.bias = torch.nn.Parameter(torch.empty(out_features, **factory_kwargs)) else: self.register_parameter('bias', None) def forward(self, input): return torch.nn.functional.linear(input, self.weight, self.bias) class Conv2d(torch.nn.Conv2d): def reset_parameters(self): return None def conv_nd(dims, *args, **kwargs): if dims == 2: return Conv2d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") @contextmanager def use_comfy_ops(): # Kind of an ugly hack but I can't think of a better way old_torch_nn_linear = torch.nn.Linear torch.nn.Linear = Linear try: yield finally: torch.nn.Linear = old_torch_nn_linear