from typing import Optional, Tuple, List import torch import torch.nn as nn import einops from einops import repeat from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps import torch.nn.functional as F from comfy.ldm.flux.math import apply_rope, rope from comfy.ldm.flux.layers import LastLayer from comfy.ldm.modules.attention import optimized_attention import comfy.model_management import comfy.ldm.common_dit # Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py class EmbedND(nn.Module): def __init__(self, theta: int, axes_dim: List[int]): super().__init__() self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(2) class PatchEmbed(nn.Module): def __init__( self, patch_size=2, in_channels=4, out_channels=1024, dtype=None, device=None, operations=None ): super().__init__() self.patch_size = patch_size self.out_channels = out_channels self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device) def forward(self, latent): latent = self.proj(latent) return latent class PooledEmbed(nn.Module): def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None): super().__init__() self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations) def forward(self, pooled_embed): return self.pooled_embedder(pooled_embed) class TimestepEmbed(nn.Module): def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): super().__init__() self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations) def forward(self, timesteps, wdtype): t_emb = self.time_proj(timesteps).to(dtype=wdtype) t_emb = self.timestep_embedder(t_emb) return t_emb def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor): return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2]) class HiDreamAttnProcessor_flashattn: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __call__( self, attn, image_tokens: torch.FloatTensor, image_tokens_masks: Optional[torch.FloatTensor] = None, text_tokens: Optional[torch.FloatTensor] = None, rope: torch.FloatTensor = None, *args, **kwargs, ) -> torch.FloatTensor: dtype = image_tokens.dtype batch_size = image_tokens.shape[0] query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype) key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype) value_i = attn.to_v(image_tokens) inner_dim = key_i.shape[-1] head_dim = inner_dim // attn.heads query_i = query_i.view(batch_size, -1, attn.heads, head_dim) key_i = key_i.view(batch_size, -1, attn.heads, head_dim) value_i = value_i.view(batch_size, -1, attn.heads, head_dim) if image_tokens_masks is not None: key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1) if not attn.single: query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype) key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype) value_t = attn.to_v_t(text_tokens) query_t = query_t.view(batch_size, -1, attn.heads, head_dim) key_t = key_t.view(batch_size, -1, attn.heads, head_dim) value_t = value_t.view(batch_size, -1, attn.heads, head_dim) num_image_tokens = query_i.shape[1] num_text_tokens = query_t.shape[1] query = torch.cat([query_i, query_t], dim=1) key = torch.cat([key_i, key_t], dim=1) value = torch.cat([value_i, value_t], dim=1) else: query = query_i key = key_i value = value_i if query.shape[-1] == rope.shape[-3] * 2: query, key = apply_rope(query, key, rope) else: query_1, query_2 = query.chunk(2, dim=-1) key_1, key_2 = key.chunk(2, dim=-1) query_1, key_1 = apply_rope(query_1, key_1, rope) query = torch.cat([query_1, query_2], dim=-1) key = torch.cat([key_1, key_2], dim=-1) hidden_states = attention(query, key, value) if not attn.single: hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1) hidden_states_i = attn.to_out(hidden_states_i) hidden_states_t = attn.to_out_t(hidden_states_t) return hidden_states_i, hidden_states_t else: hidden_states = attn.to_out(hidden_states) return hidden_states class HiDreamAttention(nn.Module): def __init__( self, query_dim: int, heads: int = 8, dim_head: int = 64, upcast_attention: bool = False, upcast_softmax: bool = False, scale_qk: bool = True, eps: float = 1e-5, processor = None, out_dim: int = None, single: bool = False, dtype=None, device=None, operations=None ): # super(Attention, self).__init__() super().__init__() self.inner_dim = out_dim if out_dim is not None else dim_head * heads self.query_dim = query_dim self.upcast_attention = upcast_attention self.upcast_softmax = upcast_softmax self.out_dim = out_dim if out_dim is not None else query_dim self.scale_qk = scale_qk self.scale = dim_head**-0.5 if self.scale_qk else 1.0 self.heads = out_dim // dim_head if out_dim is not None else heads self.sliceable_head_dim = heads self.single = single linear_cls = operations.Linear self.linear_cls = linear_cls self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device) self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device) self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device) self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device) self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device) self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device) if not single: self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device) self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device) self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device) self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device) self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device) self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device) self.processor = processor def forward( self, norm_image_tokens: torch.FloatTensor, image_tokens_masks: torch.FloatTensor = None, norm_text_tokens: torch.FloatTensor = None, rope: torch.FloatTensor = None, ) -> torch.Tensor: return self.processor( self, image_tokens = norm_image_tokens, image_tokens_masks = image_tokens_masks, text_tokens = norm_text_tokens, rope = rope, ) class FeedForwardSwiGLU(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int = 256, ffn_dim_multiplier: Optional[float] = None, dtype=None, device=None, operations=None ): super().__init__() hidden_dim = int(2 * hidden_dim / 3) # custom dim factor multiplier if ffn_dim_multiplier is not None: hidden_dim = int(ffn_dim_multiplier * hidden_dim) hidden_dim = multiple_of * ( (hidden_dim + multiple_of - 1) // multiple_of ) self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device) self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device) self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device) def forward(self, x): return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x)) # Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py class MoEGate(nn.Module): def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None): super().__init__() self.top_k = num_activated_experts self.n_routed_experts = num_routed_experts self.scoring_func = 'softmax' self.alpha = aux_loss_alpha self.seq_aux = False # topk selection algorithm self.norm_topk_prob = False self.gating_dim = embed_dim self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device)) self.reset_parameters() def reset_parameters(self) -> None: pass # import torch.nn.init as init # init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, hidden_states): bsz, seq_len, h = hidden_states.shape ### compute gating score hidden_states = hidden_states.view(-1, h) logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None) if self.scoring_func == 'softmax': scores = logits.softmax(dim=-1) else: raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}') ### select top-k experts topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False) ### norm gate to sum 1 if self.top_k > 1 and self.norm_topk_prob: denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 topk_weight = topk_weight / denominator aux_loss = None return topk_idx, topk_weight, aux_loss # Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py class MOEFeedForwardSwiGLU(nn.Module): def __init__( self, dim: int, hidden_dim: int, num_routed_experts: int, num_activated_experts: int, dtype=None, device=None, operations=None ): super().__init__() self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations) self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)]) self.gate = MoEGate( embed_dim = dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts, dtype=dtype, device=device, operations=operations ) self.num_activated_experts = num_activated_experts def forward(self, x): wtype = x.dtype identity = x orig_shape = x.shape topk_idx, topk_weight, aux_loss = self.gate(x) x = x.view(-1, x.shape[-1]) flat_topk_idx = topk_idx.view(-1) if True: # self.training: # TODO: check which branch performs faster x = x.repeat_interleave(self.num_activated_experts, dim=0) y = torch.empty_like(x, dtype=wtype) for i, expert in enumerate(self.experts): y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype) y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) y = y.view(*orig_shape).to(dtype=wtype) #y = AddAuxiliaryLoss.apply(y, aux_loss) else: y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape) y = y + self.shared_experts(identity) return y @torch.no_grad() def moe_infer(self, x, flat_expert_indices, flat_expert_weights): expert_cache = torch.zeros_like(x) idxs = flat_expert_indices.argsort() tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0) token_idxs = idxs // self.num_activated_experts for i, end_idx in enumerate(tokens_per_expert): start_idx = 0 if i == 0 else tokens_per_expert[i-1] if start_idx == end_idx: continue expert = self.experts[i] exp_token_idx = token_idxs[start_idx:end_idx] expert_tokens = x[exp_token_idx] expert_out = expert(expert_tokens) expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]]) # for fp16 and other dtype expert_cache = expert_cache.to(expert_out.dtype) expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum') return expert_cache class TextProjection(nn.Module): def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None): super().__init__() self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device) def forward(self, caption): hidden_states = self.linear(caption) return hidden_states class BlockType: TransformerBlock = 1 SingleTransformerBlock = 2 class HiDreamImageSingleTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, num_routed_experts: int = 4, num_activated_experts: int = 2, dtype=None, device=None, operations=None ): super().__init__() self.num_attention_heads = num_attention_heads self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device) ) # 1. Attention self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device) self.attn1 = HiDreamAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, processor = HiDreamAttnProcessor_flashattn(), single = True, dtype=dtype, device=device, operations=operations ) # 3. Feed-forward self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device) if num_routed_experts > 0: self.ff_i = MOEFeedForwardSwiGLU( dim = dim, hidden_dim = 4 * dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts, dtype=dtype, device=device, operations=operations ) else: self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations) def forward( self, image_tokens: torch.FloatTensor, image_tokens_masks: Optional[torch.FloatTensor] = None, text_tokens: Optional[torch.FloatTensor] = None, adaln_input: Optional[torch.FloatTensor] = None, rope: torch.FloatTensor = None, ) -> torch.FloatTensor: wtype = image_tokens.dtype shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \ self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1) # 1. MM-Attention norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype) norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i attn_output_i = self.attn1( norm_image_tokens, image_tokens_masks, rope = rope, ) image_tokens = gate_msa_i * attn_output_i + image_tokens # 2. Feed-forward norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype) norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype)) image_tokens = ff_output_i + image_tokens return image_tokens class HiDreamImageTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, num_routed_experts: int = 4, num_activated_experts: int = 2, dtype=None, device=None, operations=None ): super().__init__() self.num_attention_heads = num_attention_heads self.adaLN_modulation = nn.Sequential( nn.SiLU(), operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device) ) # nn.init.zeros_(self.adaLN_modulation[1].weight) # nn.init.zeros_(self.adaLN_modulation[1].bias) # 1. Attention self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device) self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device) self.attn1 = HiDreamAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, processor = HiDreamAttnProcessor_flashattn(), single = False, dtype=dtype, device=device, operations=operations ) # 3. Feed-forward self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device) if num_routed_experts > 0: self.ff_i = MOEFeedForwardSwiGLU( dim = dim, hidden_dim = 4 * dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts, dtype=dtype, device=device, operations=operations ) else: self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations) self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False) self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations) def forward( self, image_tokens: torch.FloatTensor, image_tokens_masks: Optional[torch.FloatTensor] = None, text_tokens: Optional[torch.FloatTensor] = None, adaln_input: Optional[torch.FloatTensor] = None, rope: torch.FloatTensor = None, ) -> torch.FloatTensor: wtype = image_tokens.dtype shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \ shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \ self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1) # 1. MM-Attention norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype) norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype) norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t attn_output_i, attn_output_t = self.attn1( norm_image_tokens, image_tokens_masks, norm_text_tokens, rope = rope, ) image_tokens = gate_msa_i * attn_output_i + image_tokens text_tokens = gate_msa_t * attn_output_t + text_tokens # 2. Feed-forward norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype) norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype) norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens) ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens) image_tokens = ff_output_i + image_tokens text_tokens = ff_output_t + text_tokens return image_tokens, text_tokens class HiDreamImageBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, num_routed_experts: int = 4, num_activated_experts: int = 2, block_type: BlockType = BlockType.TransformerBlock, dtype=None, device=None, operations=None ): super().__init__() block_classes = { BlockType.TransformerBlock: HiDreamImageTransformerBlock, BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock, } self.block = block_classes[block_type]( dim, num_attention_heads, attention_head_dim, num_routed_experts, num_activated_experts, dtype=dtype, device=device, operations=operations ) def forward( self, image_tokens: torch.FloatTensor, image_tokens_masks: Optional[torch.FloatTensor] = None, text_tokens: Optional[torch.FloatTensor] = None, adaln_input: torch.FloatTensor = None, rope: torch.FloatTensor = None, ) -> torch.FloatTensor: return self.block( image_tokens, image_tokens_masks, text_tokens, adaln_input, rope, ) class HiDreamImageTransformer2DModel(nn.Module): def __init__( self, patch_size: Optional[int] = None, in_channels: int = 64, out_channels: Optional[int] = None, num_layers: int = 16, num_single_layers: int = 32, attention_head_dim: int = 128, num_attention_heads: int = 20, caption_channels: List[int] = None, text_emb_dim: int = 2048, num_routed_experts: int = 4, num_activated_experts: int = 2, axes_dims_rope: Tuple[int, int] = (32, 32), max_resolution: Tuple[int, int] = (128, 128), llama_layers: List[int] = None, image_model=None, dtype=None, device=None, operations=None ): self.patch_size = patch_size self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.num_layers = num_layers self.num_single_layers = num_single_layers self.gradient_checkpointing = False super().__init__() self.dtype = dtype self.out_channels = out_channels or in_channels self.inner_dim = self.num_attention_heads * self.attention_head_dim self.llama_layers = llama_layers self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations) self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations) self.x_embedder = PatchEmbed( patch_size = patch_size, in_channels = in_channels, out_channels = self.inner_dim, dtype=dtype, device=device, operations=operations ) self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope) self.double_stream_blocks = nn.ModuleList( [ HiDreamImageBlock( dim = self.inner_dim, num_attention_heads = self.num_attention_heads, attention_head_dim = self.attention_head_dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts, block_type = BlockType.TransformerBlock, dtype=dtype, device=device, operations=operations ) for i in range(self.num_layers) ] ) self.single_stream_blocks = nn.ModuleList( [ HiDreamImageBlock( dim = self.inner_dim, num_attention_heads = self.num_attention_heads, attention_head_dim = self.attention_head_dim, num_routed_experts = num_routed_experts, num_activated_experts = num_activated_experts, block_type = BlockType.SingleTransformerBlock, dtype=dtype, device=device, operations=operations ) for i in range(self.num_single_layers) ] ) self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations) caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ] caption_projection = [] for caption_channel in caption_channels: caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations)) self.caption_projection = nn.ModuleList(caption_projection) self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size) def expand_timesteps(self, timesteps, batch_size, device): if not torch.is_tensor(timesteps): is_mps = device.type == "mps" if isinstance(timesteps, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(batch_size) return timesteps def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]: x_arr = [] for i, img_size in enumerate(img_sizes): pH, pW = img_size x_arr.append( einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)', p1=self.patch_size, p2=self.patch_size) ) x = torch.cat(x_arr, dim=0) return x def patchify(self, x, max_seq, img_sizes=None): pz2 = self.patch_size * self.patch_size if isinstance(x, torch.Tensor): B = x.shape[0] device = x.device dtype = x.dtype else: B = len(x) device = x[0].device dtype = x[0].dtype x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device) if img_sizes is not None: for i, img_size in enumerate(img_sizes): x_masks[i, 0:img_size[0] * img_size[1]] = 1 x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2) elif isinstance(x, torch.Tensor): pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size) img_sizes = [[pH, pW]] * B x_masks = None else: raise NotImplementedError return x, x_masks, img_sizes def forward( self, x: torch.Tensor, t: torch.Tensor, y: Optional[torch.Tensor] = None, context: Optional[torch.Tensor] = None, encoder_hidden_states_llama3=None, control = None, transformer_options = {}, ) -> torch.Tensor: bs, c, h, w = x.shape hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size)) timesteps = t pooled_embeds = y T5_encoder_hidden_states = context img_sizes = None # spatial forward batch_size = hidden_states.shape[0] hidden_states_type = hidden_states.dtype # 0. time timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device) timesteps = self.t_embedder(timesteps, hidden_states_type) p_embedder = self.p_embedder(pooled_embeds) adaln_input = timesteps + p_embedder hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes) if image_tokens_masks is None: pH, pW = img_sizes[0] img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device) img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size) hidden_states = self.x_embedder(hidden_states) # T5_encoder_hidden_states = encoder_hidden_states[0] encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0) encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers] if self.caption_projection is not None: new_encoder_hidden_states = [] for i, enc_hidden_state in enumerate(encoder_hidden_states): enc_hidden_state = self.caption_projection[i](enc_hidden_state) enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1]) new_encoder_hidden_states.append(enc_hidden_state) encoder_hidden_states = new_encoder_hidden_states T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states) T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states.append(T5_encoder_hidden_states) txt_ids = torch.zeros( batch_size, encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1], 3, device=img_ids.device, dtype=img_ids.dtype ) ids = torch.cat((img_ids, txt_ids), dim=1) rope = self.pe_embedder(ids) # 2. Blocks block_id = 0 initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1) initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1] for bid, block in enumerate(self.double_stream_blocks): cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id] cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1) hidden_states, initial_encoder_hidden_states = block( image_tokens = hidden_states, image_tokens_masks = image_tokens_masks, text_tokens = cur_encoder_hidden_states, adaln_input = adaln_input, rope = rope, ) initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len] block_id += 1 image_tokens_seq_len = hidden_states.shape[1] hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1) hidden_states_seq_len = hidden_states.shape[1] if image_tokens_masks is not None: encoder_attention_mask_ones = torch.ones( (batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]), device=image_tokens_masks.device, dtype=image_tokens_masks.dtype ) image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1) for bid, block in enumerate(self.single_stream_blocks): cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id] hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1) hidden_states = block( image_tokens=hidden_states, image_tokens_masks=image_tokens_masks, text_tokens=None, adaln_input=adaln_input, rope=rope, ) hidden_states = hidden_states[:, :hidden_states_seq_len] block_id += 1 hidden_states = hidden_states[:, :image_tokens_seq_len, ...] output = self.final_layer(hidden_states, adaln_input) output = self.unpatchify(output, img_sizes) return -output[:, :, :h, :w]