import { api } from "./api.js"; export function getPngMetadata(file) { return new Promise((r) => { const reader = new FileReader(); reader.onload = (event) => { // Get the PNG data as a Uint8Array const pngData = new Uint8Array(event.target.result); const dataView = new DataView(pngData.buffer); // Check that the PNG signature is present if (dataView.getUint32(0) !== 0x89504e47) { console.error("Not a valid PNG file"); r(); return; } // Start searching for chunks after the PNG signature let offset = 8; let txt_chunks = {}; // Loop through the chunks in the PNG file while (offset < pngData.length) { // Get the length of the chunk const length = dataView.getUint32(offset); // Get the chunk type const type = String.fromCharCode(...pngData.slice(offset + 4, offset + 8)); if (type === "tEXt") { // Get the keyword let keyword_end = offset + 8; while (pngData[keyword_end] !== 0) { keyword_end++; } const keyword = String.fromCharCode(...pngData.slice(offset + 8, keyword_end)); // Get the text const contentArraySegment = pngData.slice(keyword_end + 1, offset + 8 + length); const contentJson = Array.from(contentArraySegment).map(s=>String.fromCharCode(s)).join('') txt_chunks[keyword] = contentJson; } offset += 12 + length; } r(txt_chunks); }; reader.readAsArrayBuffer(file); }); } function parseExifData(exifData) { // Check for the correct TIFF header (0x4949 for little-endian or 0x4D4D for big-endian) const isLittleEndian = new Uint16Array(exifData.slice(0, 2))[0] === 0x4949; // Function to read 16-bit and 32-bit integers from binary data function readInt(offset, isLittleEndian, length) { let arr = exifData.slice(offset, offset + length) if (length === 2) { return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint16(0, isLittleEndian); } else if (length === 4) { return new DataView(arr.buffer, arr.byteOffset, arr.byteLength).getUint32(0, isLittleEndian); } } // Read the offset to the first IFD (Image File Directory) const ifdOffset = readInt(4, isLittleEndian, 4); function parseIFD(offset) { const numEntries = readInt(offset, isLittleEndian, 2); const result = {}; for (let i = 0; i < numEntries; i++) { const entryOffset = offset + 2 + i * 12; const tag = readInt(entryOffset, isLittleEndian, 2); const type = readInt(entryOffset + 2, isLittleEndian, 2); const numValues = readInt(entryOffset + 4, isLittleEndian, 4); const valueOffset = readInt(entryOffset + 8, isLittleEndian, 4); // Read the value(s) based on the data type let value; if (type === 2) { // ASCII string value = String.fromCharCode(...exifData.slice(valueOffset, valueOffset + numValues - 1)); } result[tag] = value; } return result; } // Parse the first IFD const ifdData = parseIFD(ifdOffset); return ifdData; } function splitValues(input) { var output = {}; for (var key in input) { var value = input[key]; var splitValues = value.split(':', 2); output[splitValues[0]] = splitValues[1]; } return output; } export function getWebpMetadata(file) { return new Promise((r) => { const reader = new FileReader(); reader.onload = (event) => { const webp = new Uint8Array(event.target.result); const dataView = new DataView(webp.buffer); // Check that the WEBP signature is present if (dataView.getUint32(0) !== 0x52494646 || dataView.getUint32(8) !== 0x57454250) { console.error("Not a valid WEBP file"); r(); return; } // Start searching for chunks after the WEBP signature let offset = 12; let txt_chunks = {}; // Loop through the chunks in the WEBP file while (offset < webp.length) { const chunk_length = dataView.getUint32(offset + 4, true); const chunk_type = String.fromCharCode(...webp.slice(offset, offset + 4)); if (chunk_type === "EXIF") { if (String.fromCharCode(...webp.slice(offset + 8, offset + 8 + 6)) == "Exif\0\0") { offset += 6; } let data = parseExifData(webp.slice(offset + 8, offset + 8 + chunk_length)); for (var key in data) { var value = data[key]; let index = value.indexOf(':'); txt_chunks[value.slice(0, index)] = value.slice(index + 1); } } offset += 8 + chunk_length; } r(txt_chunks); }; reader.readAsArrayBuffer(file); }); } export function getLatentMetadata(file) { return new Promise((r) => { const reader = new FileReader(); reader.onload = (event) => { const safetensorsData = new Uint8Array(event.target.result); const dataView = new DataView(safetensorsData.buffer); let header_size = dataView.getUint32(0, true); let offset = 8; let header = JSON.parse(new TextDecoder().decode(safetensorsData.slice(offset, offset + header_size))); r(header.__metadata__); }; var slice = file.slice(0, 1024 * 1024 * 4); reader.readAsArrayBuffer(slice); }); } export async function importA1111(graph, parameters) { const p = parameters.lastIndexOf("\nSteps:"); if (p > -1) { const embeddings = await api.getEmbeddings(); const opts = parameters .substr(p) .split("\n")[1] .split(",") .reduce((p, n) => { const s = n.split(":"); p[s[0].trim().toLowerCase()] = s[1].trim(); return p; }, {}); const p2 = parameters.lastIndexOf("\nNegative prompt:", p); if (p2 > -1) { let positive = parameters.substr(0, p2).trim(); let negative = parameters.substring(p2 + 18, p).trim(); const ckptNode = LiteGraph.createNode("CheckpointLoaderSimple"); const clipSkipNode = LiteGraph.createNode("CLIPSetLastLayer"); const positiveNode = LiteGraph.createNode("CLIPTextEncode"); const negativeNode = LiteGraph.createNode("CLIPTextEncode"); const samplerNode = LiteGraph.createNode("KSampler"); const imageNode = LiteGraph.createNode("EmptyLatentImage"); const vaeNode = LiteGraph.createNode("VAEDecode"); const vaeLoaderNode = LiteGraph.createNode("VAELoader"); const saveNode = LiteGraph.createNode("SaveImage"); let hrSamplerNode = null; const ceil64 = (v) => Math.ceil(v / 64) * 64; function getWidget(node, name) { return node.widgets.find((w) => w.name === name); } function setWidgetValue(node, name, value, isOptionPrefix) { const w = getWidget(node, name); if (isOptionPrefix) { const o = w.options.values.find((w) => w.startsWith(value)); if (o) { w.value = o; } else { console.warn(`Unknown value '${value}' for widget '${name}'`, node); w.value = value; } } else { w.value = value; } } function createLoraNodes(clipNode, text, prevClip, prevModel) { const loras = []; text = text.replace(/]+)>/g, function (m, c) { const s = c.split(":"); const weight = parseFloat(s[1]); if (isNaN(weight)) { console.warn("Invalid LORA", m); } else { loras.push({ name: s[0], weight }); } return ""; }); for (const l of loras) { const loraNode = LiteGraph.createNode("LoraLoader"); graph.add(loraNode); setWidgetValue(loraNode, "lora_name", l.name, true); setWidgetValue(loraNode, "strength_model", l.weight); setWidgetValue(loraNode, "strength_clip", l.weight); prevModel.node.connect(prevModel.index, loraNode, 0); prevClip.node.connect(prevClip.index, loraNode, 1); prevModel = { node: loraNode, index: 0 }; prevClip = { node: loraNode, index: 1 }; } prevClip.node.connect(1, clipNode, 0); prevModel.node.connect(0, samplerNode, 0); if (hrSamplerNode) { prevModel.node.connect(0, hrSamplerNode, 0); } return { text, prevModel, prevClip }; } function replaceEmbeddings(text) { if(!embeddings.length) return text; return text.replaceAll( new RegExp( "\\b(" + embeddings.map((e) => e.replace(/[.*+?^${}()|[\]\\]/g, "\\$&")).join("\\b|\\b") + ")\\b", "ig" ), "embedding:$1" ); } function popOpt(name) { const v = opts[name]; delete opts[name]; return v; } graph.clear(); graph.add(ckptNode); graph.add(clipSkipNode); graph.add(positiveNode); graph.add(negativeNode); graph.add(samplerNode); graph.add(imageNode); graph.add(vaeNode); graph.add(vaeLoaderNode); graph.add(saveNode); ckptNode.connect(1, clipSkipNode, 0); clipSkipNode.connect(0, positiveNode, 0); clipSkipNode.connect(0, negativeNode, 0); ckptNode.connect(0, samplerNode, 0); positiveNode.connect(0, samplerNode, 1); negativeNode.connect(0, samplerNode, 2); imageNode.connect(0, samplerNode, 3); vaeNode.connect(0, saveNode, 0); samplerNode.connect(0, vaeNode, 0); vaeLoaderNode.connect(0, vaeNode, 1); const handlers = { model(v) { setWidgetValue(ckptNode, "ckpt_name", v, true); }, "cfg scale"(v) { setWidgetValue(samplerNode, "cfg", +v); }, "clip skip"(v) { setWidgetValue(clipSkipNode, "stop_at_clip_layer", -v); }, sampler(v) { let name = v.toLowerCase().replace("++", "pp").replaceAll(" ", "_"); if (name.includes("karras")) { name = name.replace("karras", "").replace(/_+$/, ""); setWidgetValue(samplerNode, "scheduler", "karras"); } else { setWidgetValue(samplerNode, "scheduler", "normal"); } const w = getWidget(samplerNode, "sampler_name"); const o = w.options.values.find((w) => w === name || w === "sample_" + name); if (o) { setWidgetValue(samplerNode, "sampler_name", o); } }, size(v) { const wxh = v.split("x"); const w = ceil64(+wxh[0]); const h = ceil64(+wxh[1]); const hrUp = popOpt("hires upscale"); const hrSz = popOpt("hires resize"); let hrMethod = popOpt("hires upscaler"); setWidgetValue(imageNode, "width", w); setWidgetValue(imageNode, "height", h); if (hrUp || hrSz) { let uw, uh; if (hrUp) { uw = w * hrUp; uh = h * hrUp; } else { const s = hrSz.split("x"); uw = +s[0]; uh = +s[1]; } let upscaleNode; let latentNode; if (hrMethod.startsWith("Latent")) { latentNode = upscaleNode = LiteGraph.createNode("LatentUpscale"); graph.add(upscaleNode); samplerNode.connect(0, upscaleNode, 0); switch (hrMethod) { case "Latent (nearest-exact)": hrMethod = "nearest-exact"; break; } setWidgetValue(upscaleNode, "upscale_method", hrMethod, true); } else { const decode = LiteGraph.createNode("VAEDecodeTiled"); graph.add(decode); samplerNode.connect(0, decode, 0); vaeLoaderNode.connect(0, decode, 1); const upscaleLoaderNode = LiteGraph.createNode("UpscaleModelLoader"); graph.add(upscaleLoaderNode); setWidgetValue(upscaleLoaderNode, "model_name", hrMethod, true); const modelUpscaleNode = LiteGraph.createNode("ImageUpscaleWithModel"); graph.add(modelUpscaleNode); decode.connect(0, modelUpscaleNode, 1); upscaleLoaderNode.connect(0, modelUpscaleNode, 0); upscaleNode = LiteGraph.createNode("ImageScale"); graph.add(upscaleNode); modelUpscaleNode.connect(0, upscaleNode, 0); const vaeEncodeNode = (latentNode = LiteGraph.createNode("VAEEncodeTiled")); graph.add(vaeEncodeNode); upscaleNode.connect(0, vaeEncodeNode, 0); vaeLoaderNode.connect(0, vaeEncodeNode, 1); } setWidgetValue(upscaleNode, "width", ceil64(uw)); setWidgetValue(upscaleNode, "height", ceil64(uh)); hrSamplerNode = LiteGraph.createNode("KSampler"); graph.add(hrSamplerNode); ckptNode.connect(0, hrSamplerNode, 0); positiveNode.connect(0, hrSamplerNode, 1); negativeNode.connect(0, hrSamplerNode, 2); latentNode.connect(0, hrSamplerNode, 3); hrSamplerNode.connect(0, vaeNode, 0); } }, steps(v) { setWidgetValue(samplerNode, "steps", +v); }, seed(v) { setWidgetValue(samplerNode, "seed", +v); }, }; for (const opt in opts) { if (opt in handlers) { handlers[opt](popOpt(opt)); } } if (hrSamplerNode) { setWidgetValue(hrSamplerNode, "steps", getWidget(samplerNode, "steps").value); setWidgetValue(hrSamplerNode, "cfg", getWidget(samplerNode, "cfg").value); setWidgetValue(hrSamplerNode, "scheduler", getWidget(samplerNode, "scheduler").value); setWidgetValue(hrSamplerNode, "sampler_name", getWidget(samplerNode, "sampler_name").value); setWidgetValue(hrSamplerNode, "denoise", +(popOpt("denoising strength") || "1")); } let n = createLoraNodes(positiveNode, positive, { node: clipSkipNode, index: 0 }, { node: ckptNode, index: 0 }); positive = n.text; n = createLoraNodes(negativeNode, negative, n.prevClip, n.prevModel); negative = n.text; setWidgetValue(positiveNode, "text", replaceEmbeddings(positive)); setWidgetValue(negativeNode, "text", replaceEmbeddings(negative)); graph.arrange(); for (const opt of ["model hash", "ensd"]) { delete opts[opt]; } console.warn("Unhandled parameters:", opts); } } }