from __future__ import annotations from typing import TYPE_CHECKING, Callable import enum import math import torch import numpy as np import itertools import logging if TYPE_CHECKING: from comfy.model_patcher import ModelPatcher, PatcherInjection from comfy.model_base import BaseModel from comfy.sd import CLIP import comfy.lora import comfy.model_management import comfy.patcher_extension from node_helpers import conditioning_set_values # ####################################################################################################### # Hooks explanation # ------------------- # The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to # make explicit special cases like it does for ControlNet and GLIGEN. # # This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those # that should run special code when a 'marked' cond is used in sampling. # ####################################################################################################### class EnumHookMode(enum.Enum): ''' Priority of hook memory optimization vs. speed, mostly related to WeightHooks. MinVram: No caching will occur for any operations related to hooks. MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups. ''' MinVram = "minvram" MaxSpeed = "maxspeed" class EnumHookType(enum.Enum): ''' Hook types, each of which has different expected behavior. ''' Weight = "weight" ObjectPatch = "object_patch" AddModels = "add_models" TransformerOptions = "transformer_options" Injections = "add_injections" class EnumWeightTarget(enum.Enum): Model = "model" Clip = "clip" class EnumHookScope(enum.Enum): ''' Determines if hook should be limited in its influence over sampling. AllConditioning: hook will affect all conds used in sampling. HookedOnly: hook will only affect the conds it was attached to. ''' AllConditioning = "all_conditioning" HookedOnly = "hooked_only" class _HookRef: pass def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): '''Example for how should_register function should look like.''' return True def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]: '''Creates base dictionary for use with Hooks' target param.''' d = {} if target is not None: d['target'] = target d.update(kwargs) return d class Hook: def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None, hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning): self.hook_type = hook_type self.hook_ref = hook_ref if hook_ref else _HookRef() self.hook_id = hook_id self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup() self.custom_should_register = default_should_register self.auto_apply_to_nonpositive = False self.hook_scope = hook_scope @property def strength(self): return self.hook_keyframe.strength def initialize_timesteps(self, model: BaseModel): self.reset() self.hook_keyframe.initialize_timesteps(model) def reset(self): self.hook_keyframe.reset() def clone(self): c: Hook = self.__class__() c.hook_type = self.hook_type c.hook_ref = self.hook_ref c.hook_id = self.hook_id c.hook_keyframe = self.hook_keyframe c.custom_should_register = self.custom_should_register # TODO: make this do something c.auto_apply_to_nonpositive = self.auto_apply_to_nonpositive return c def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): return self.custom_should_register(self, model, model_options, target_dict, registered) def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): raise NotImplementedError("add_hook_patches should be defined for Hook subclasses") def on_apply(self, model: ModelPatcher, transformer_options: dict[str]): pass def on_unapply(self, model: ModelPatcher, transformer_options: dict[str]): pass def __eq__(self, other: Hook): return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref def __hash__(self): return hash(self.hook_ref) class WeightHook(Hook): ''' Hook responsible for tracking weights to be applied to some model/clip. Note, value of hook_scope is ignored and is treated as HookedOnly. ''' def __init__(self, strength_model=1.0, strength_clip=1.0): super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly) self.weights: dict = None self.weights_clip: dict = None self.need_weight_init = True self._strength_model = strength_model self._strength_clip = strength_clip @property def strength_model(self): return self._strength_model * self.strength @property def strength_clip(self): return self._strength_clip * self.strength def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): if not self.should_register(model, model_options, target_dict, registered): return False weights = None target = target_dict.get('target', None) if target == EnumWeightTarget.Clip: strength = self._strength_clip else: strength = self._strength_model if self.need_weight_init: key_map = {} if target == EnumWeightTarget.Clip: key_map = comfy.lora.model_lora_keys_clip(model.model, key_map) else: key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False) else: if target == EnumWeightTarget.Clip: weights = self.weights_clip else: weights = self.weights model.add_hook_patches(hook=self, patches=weights, strength_patch=strength) registered.add(self) return True # TODO: add logs about any keys that were not applied def clone(self): c: WeightHook = super().clone() c.weights = self.weights c.weights_clip = self.weights_clip c.need_weight_init = self.need_weight_init c._strength_model = self._strength_model c._strength_clip = self._strength_clip return c class ObjectPatchHook(Hook): def __init__(self, object_patches: dict[str]=None): super().__init__(hook_type=EnumHookType.ObjectPatch) self.object_patches = object_patches def clone(self): c: ObjectPatchHook = super().clone() c.object_patches = self.object_patches return c def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.") if not self.should_register(model, model_options, target_dict, registered): return False registered.add(self) return True class AddModelsHook(Hook): ''' Hook responsible for telling model management any additional models that should be loaded. Note, value of hook_scope is ignored and is treated as AllConditioning. ''' def __init__(self, models: list[ModelPatcher]=None, key: str=None): super().__init__(hook_type=EnumHookType.AddModels) self.models = models self.key = key self.append_when_same = True '''Curently does nothing.''' def clone(self): c: AddModelsHook = super().clone() c.models = self.models.copy() if self.models else self.models c.key = self.key c.append_when_same = self.append_when_same return c def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): if not self.should_register(model, model_options, target_dict, registered): return False registered.add(self) return True class TransformerOptionsHook(Hook): ''' Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options. ''' def __init__(self, wrappers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None): super().__init__(hook_type=EnumHookType.TransformerOptions) self.transformers_dict = wrappers_dict def clone(self): c: TransformerOptionsHook = super().clone() c.transformers_dict = self.transformers_dict return c def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): if not self.should_register(model, model_options, target_dict, registered): return False # NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks if self.hook_scope == EnumHookScope.AllConditioning: add_model_options = {"transformer_options": self.transformers_dict, "to_load_options": self.transformers_dict} else: add_model_options = {"to_load_options": self.transformers_dict} comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False) registered.add(self) return True def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]): comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False) WrapperHook = TransformerOptionsHook '''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.''' class SetInjectionsHook(Hook): def __init__(self, key: str=None, injections: list[PatcherInjection]=None): super().__init__(hook_type=EnumHookType.Injections) self.key = key self.injections = injections def clone(self): c: SetInjectionsHook = super().clone() c.key = self.key c.injections = self.injections.copy() if self.injections else self.injections return c def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup): raise NotImplementedError("SetInjectionsHook is not supported yet in ComfyUI.") if not self.should_register(model, model_options, target_dict, registered): return False registered.add(self) return True def add_hook_injections(self, model: ModelPatcher): # TODO: add functionality pass class HookGroup: ''' Stores groups of hooks, and allows them to be queried by type. To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly; always use the provided functions on HookGroup. ''' def __init__(self): self.hooks: list[Hook] = [] self._hook_dict: dict[EnumHookType, list[Hook]] = {} def __len__(self): return len(self.hooks) def add(self, hook: Hook): if hook not in self.hooks: self.hooks.append(hook) self._hook_dict.setdefault(hook.hook_type, []).append(hook) def remove(self, hook: Hook): if hook in self.hooks: self.hooks.remove(hook) self._hook_dict[hook.hook_type].remove(hook) def get_type(self, hook_type: EnumHookType): return self._hook_dict.get(hook_type, []) def contains(self, hook: Hook): return hook in self.hooks def clone(self): c = HookGroup() for hook in self.hooks: c.add(hook.clone()) return c def clone_and_combine(self, other: HookGroup): c = self.clone() if other is not None: for hook in other.hooks: c.add(hook.clone()) return c def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup): if hook_kf is None: hook_kf = HookKeyframeGroup() else: hook_kf = hook_kf.clone() for hook in self.hooks: hook.hook_keyframe = hook_kf def get_hooks_for_clip_schedule(self): scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {} # only care about WeightHooks, for now for hook in self.get_type(EnumHookType.Weight): hook: WeightHook hook_schedule = [] # if no hook keyframes, assign default value if len(hook.hook_keyframe.keyframes) == 0: hook_schedule.append(((0.0, 1.0), None)) scheduled_hooks[hook] = hook_schedule continue # find ranges of values prev_keyframe = hook.hook_keyframe.keyframes[0] for keyframe in hook.hook_keyframe.keyframes: if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength): hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe)) prev_keyframe = keyframe elif keyframe.start_percent == prev_keyframe.start_percent: prev_keyframe = keyframe # create final range, assuming last start_percent was not 1.0 if not math.isclose(prev_keyframe.start_percent, 1.0): hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe)) scheduled_hooks[hook] = hook_schedule # hooks should not have their schedules in a list of tuples all_ranges: list[tuple[float, float]] = [] for range_kfs in scheduled_hooks.values(): for t_range, keyframe in range_kfs: all_ranges.append(t_range) # turn list of ranges into boundaries boundaries_set = set(itertools.chain.from_iterable(all_ranges)) boundaries_set.add(0.0) boundaries = sorted(boundaries_set) real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)] # with real ranges defined, give appropriate hooks w/ keyframes for each range scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = [] for t_range in real_ranges: hooks_schedule = [] for hook, val in scheduled_hooks.items(): keyframe = None # check if is a keyframe that works for the current t_range for stored_range, stored_kf in val: # if stored start is less than current end, then fits - give it assigned keyframe if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]: keyframe = stored_kf break hooks_schedule.append((hook, keyframe)) scheduled_keyframes.append((t_range, hooks_schedule)) return scheduled_keyframes def reset(self): for hook in self.hooks: hook.reset() @staticmethod def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup: actual: list[HookGroup] = [] for group in hooks_list: if group is not None: actual.append(group) if len(actual) < require_count: raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.") # if no hooks, then return None if len(actual) == 0: return None # if only 1 hook, just return itself without cloning elif len(actual) == 1: return actual[0] final_hook: HookGroup = None for hook in actual: if final_hook is None: final_hook = hook.clone() else: final_hook = final_hook.clone_and_combine(hook) return final_hook class HookKeyframe: def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1): self.strength = strength # scheduling self.start_percent = float(start_percent) self.start_t = 999999999.9 self.guarantee_steps = guarantee_steps def get_effective_guarantee_steps(self, max_sigma: torch.Tensor): '''If keyframe starts before current sampling range (max_sigma), treat as 0.''' if self.start_t > max_sigma: return 0 return self.guarantee_steps def clone(self): c = HookKeyframe(strength=self.strength, start_percent=self.start_percent, guarantee_steps=self.guarantee_steps) c.start_t = self.start_t return c class HookKeyframeGroup: def __init__(self): self.keyframes: list[HookKeyframe] = [] self._current_keyframe: HookKeyframe = None self._current_used_steps = 0 self._current_index = 0 self._current_strength = None self._curr_t = -1. # properties shadow those of HookWeightsKeyframe @property def strength(self): if self._current_keyframe is not None: return self._current_keyframe.strength return 1.0 def reset(self): self._current_keyframe = None self._current_used_steps = 0 self._current_index = 0 self._current_strength = None self.curr_t = -1. self._set_first_as_current() def add(self, keyframe: HookKeyframe): # add to end of list, then sort self.keyframes.append(keyframe) self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent") self._set_first_as_current() def _set_first_as_current(self): if len(self.keyframes) > 0: self._current_keyframe = self.keyframes[0] else: self._current_keyframe = None def has_guarantee_steps(self): for kf in self.keyframes: if kf.guarantee_steps > 0: return True return False def has_index(self, index: int): return index >= 0 and index < len(self.keyframes) def is_empty(self): return len(self.keyframes) == 0 def clone(self): c = HookKeyframeGroup() for keyframe in self.keyframes: c.keyframes.append(keyframe.clone()) c._set_first_as_current() return c def initialize_timesteps(self, model: BaseModel): for keyframe in self.keyframes: keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent) def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool: if self.is_empty(): return False if curr_t == self._curr_t: return False max_sigma = torch.max(transformer_options["sample_sigmas"]) prev_index = self._current_index prev_strength = self._current_strength # if met guaranteed steps, look for next keyframe in case need to switch if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma): # if has next index, loop through and see if need to switch if self.has_index(self._current_index+1): for i in range(self._current_index+1, len(self.keyframes)): eval_c = self.keyframes[i] # check if start_t is greater or equal to curr_t # NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling if eval_c.start_t >= curr_t: self._current_index = i self._current_strength = eval_c.strength self._current_keyframe = eval_c self._current_used_steps = 0 # if guarantee_steps greater than zero, stop searching for other keyframes if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0: break # if eval_c is outside the percent range, stop looking further else: break # update steps current context is used self._current_used_steps += 1 # update current timestep this was performed on self._curr_t = curr_t # return True if keyframe changed, False if no change return prev_index != self._current_index and prev_strength != self._current_strength class InterpolationMethod: LINEAR = "linear" EASE_IN = "ease_in" EASE_OUT = "ease_out" EASE_IN_OUT = "ease_in_out" _LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT] @classmethod def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False): diff = num_to - num_from if method == cls.LINEAR: weights = torch.linspace(num_from, num_to, length) elif method == cls.EASE_IN: index = torch.linspace(0, 1, length) weights = diff * np.power(index, 2) + num_from elif method == cls.EASE_OUT: index = torch.linspace(0, 1, length) weights = diff * (1 - np.power(1 - index, 2)) + num_from elif method == cls.EASE_IN_OUT: index = torch.linspace(0, 1, length) weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from else: raise ValueError(f"Unrecognized interpolation method '{method}'.") if reverse: weights = weights.flip(dims=(0,)) return weights def get_sorted_list_via_attr(objects: list, attr: str) -> list: if not objects: return objects elif len(objects) <= 1: return [x for x in objects] # now that we know we have to sort, do it following these rules: # a) if objects have same value of attribute, maintain their relative order # b) perform sorting of the groups of objects with same attributes unique_attrs = {} for o in objects: val_attr = getattr(o, attr) attr_list: list = unique_attrs.get(val_attr, list()) attr_list.append(o) if val_attr not in unique_attrs: unique_attrs[val_attr] = attr_list # now that we have the unique attr values grouped together in relative order, sort them by key sorted_attrs = dict(sorted(unique_attrs.items())) # now flatten out the dict into a list to return sorted_list = [] for object_list in sorted_attrs.values(): sorted_list.extend(object_list) return sorted_list def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float): hook_group = HookGroup() hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip) hook_group.add(hook) hook.weights = lora return hook_group def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float): hook_group = HookGroup() hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip) hook_group.add(hook) patches_model = None patches_clip = None if weights_model is not None: patches_model = {} for key in weights_model: patches_model[key] = ("model_as_lora", (weights_model[key],)) if weights_clip is not None: patches_clip = {} for key in weights_clip: patches_clip[key] = ("model_as_lora", (weights_clip[key],)) hook.weights = patches_model hook.weights_clip = patches_clip hook.need_weight_init = False return hook_group def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True): if model is None: return None patches_model: dict[str, torch.Tensor] = model.model.state_dict() if discard_model_sampling: # do not include ANY model_sampling components of the model that should act as a patch for key in list(patches_model.keys()): if key.startswith("model_sampling"): patches_model.pop(key, None) return patches_model # NOTE: this function shows how to register weight hooks directly on the ModelPatchers def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float): key_map = {} if model is not None: key_map = comfy.lora.model_lora_keys_unet(model.model, key_map) if clip is not None: key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map) hook_group = HookGroup() hook = WeightHook() hook_group.add(hook) loaded: dict[str] = comfy.lora.load_lora(lora, key_map) if model is not None: new_modelpatcher = model.clone() k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model) else: k = () new_modelpatcher = None if clip is not None: new_clip = clip.clone() k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip) else: k1 = () new_clip = None k = set(k) k1 = set(k1) for x in loaded: if (x not in k) and (x not in k1): logging.warning(f"NOT LOADED {x}") return (new_modelpatcher, new_clip, hook_group) def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]): hooks_key = 'hooks' # if hooks only exist in one dict, do what's needed so that it ends up in c_dict if hooks_key not in values: return if hooks_key not in c_dict: hooks_value = values.get(hooks_key, None) if hooks_value is not None: c_dict[hooks_key] = hooks_value return # otherwise, need to combine with minimum duplication via cache hooks_tuple = (c_dict[hooks_key], values[hooks_key]) cached_hooks = cache.get(hooks_tuple, None) if cached_hooks is None: new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1]) cache[hooks_tuple] = new_hooks c_dict[hooks_key] = new_hooks else: c_dict[hooks_key] = cache[hooks_tuple] def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True): c = [] hooks_combine_cache: dict[tuple[HookGroup, HookGroup], HookGroup] = {} for t in conditioning: n = [t[0], t[1].copy()] for k in values: if append_hooks and k == 'hooks': _combine_hooks_from_values(n[1], values, hooks_combine_cache) else: n[1][k] = values[k] c.append(n) return c def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True): if hooks is None: return cond return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks) def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]): if timestep_range is None: return cond return conditioning_set_values(cond, {"start_percent": timestep_range[0], "end_percent": timestep_range[1]}) def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float): if mask is None: return cond set_area_to_bounds = False if set_cond_area != 'default': set_area_to_bounds = True if len(mask.shape) < 3: mask = mask.unsqueeze(0) return conditioning_set_values(cond, {'mask': mask, 'set_area_to_bounds': set_area_to_bounds, 'mask_strength': strength}) def combine_conditioning(conds: list): combined_conds = [] for cond in conds: combined_conds.extend(cond) return combined_conds def combine_with_new_conds(conds: list, new_conds: list): combined_conds = [] for c, new_c in zip(conds, new_conds): combined_conds.append(combine_conditioning([c, new_c])) return combined_conds def set_conds_props(conds: list, strength: float, set_cond_area: str, mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): final_conds = [] for c in conds: # first, apply lora_hook to conditioning, if provided c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks) # next, apply mask to conditioning c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area) # apply timesteps, if present c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range) # finally, apply mask to conditioning and store final_conds.append(c) return final_conds def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default", mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): combined_conds = [] for c, masked_c in zip(conds, new_conds): # first, apply lora_hook to new conditioning, if provided masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks) # next, apply mask to new conditioning, if provided masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength) # apply timesteps, if present masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range) # finally, combine with existing conditioning and store combined_conds.append(combine_conditioning([c, masked_c])) return combined_conds def set_default_conds_and_combine(conds: list, new_conds: list, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True): combined_conds = [] for c, new_c in zip(conds, new_conds): # first, apply lora_hook to new conditioning, if provided new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks) # next, add default_cond key to cond so that during sampling, it can be identified new_c = conditioning_set_values(new_c, {'default': True}) # apply timesteps, if present new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range) # finally, combine with existing conditioning and store combined_conds.append(combine_conditioning([c, new_c])) return combined_conds