# original code from: https://github.com/nvidia-cosmos/cosmos-predict2 import torch from torch import nn from einops import rearrange from einops.layers.torch import Rearrange import logging from typing import Callable, Optional, Tuple import math from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis from torchvision import transforms from comfy.ldm.modules.attention import optimized_attention def apply_rotary_pos_emb( t: torch.Tensor, freqs: torch.Tensor, ) -> torch.Tensor: t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float() t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1] t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t) return t_out # ---------------------- Feed Forward Network ----------------------- class GPT2FeedForward(nn.Module): def __init__(self, d_model: int, d_ff: int, device=None, dtype=None, operations=None) -> None: super().__init__() self.activation = nn.GELU() self.layer1 = operations.Linear(d_model, d_ff, bias=False, device=device, dtype=dtype) self.layer2 = operations.Linear(d_ff, d_model, bias=False, device=device, dtype=dtype) self._layer_id = None self._dim = d_model self._hidden_dim = d_ff def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.layer1(x) x = self.activation(x) x = self.layer2(x) return x def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor: """Computes multi-head attention using PyTorch's native implementation. This function provides a PyTorch backend alternative to Transformer Engine's attention operation. It rearranges the input tensors to match PyTorch's expected format, computes scaled dot-product attention, and rearranges the output back to the original format. The input tensor names use the following dimension conventions: - B: batch size - S: sequence length - H: number of attention heads - D: head dimension Args: q_B_S_H_D: Query tensor with shape (batch, seq_len, n_heads, head_dim) k_B_S_H_D: Key tensor with shape (batch, seq_len, n_heads, head_dim) v_B_S_H_D: Value tensor with shape (batch, seq_len, n_heads, head_dim) Returns: Attention output tensor with shape (batch, seq_len, n_heads * head_dim) """ in_q_shape = q_B_S_H_D.shape in_k_shape = k_B_S_H_D.shape q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1]) k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1]) v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1]) return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True) class Attention(nn.Module): """ A flexible attention module supporting both self-attention and cross-attention mechanisms. This module implements a multi-head attention layer that can operate in either self-attention or cross-attention mode. The mode is determined by whether a context dimension is provided. The implementation uses scaled dot-product attention and supports optional bias terms and dropout regularization. Args: query_dim (int): The dimensionality of the query vectors. context_dim (int, optional): The dimensionality of the context (key/value) vectors. If None, the module operates in self-attention mode using query_dim. Default: None n_heads (int, optional): Number of attention heads for multi-head attention. Default: 8 head_dim (int, optional): The dimension of each attention head. Default: 64 dropout (float, optional): Dropout probability applied to the output. Default: 0.0 qkv_format (str, optional): Format specification for QKV tensors. Default: "bshd" backend (str, optional): Backend to use for the attention operation. Default: "transformer_engine" Examples: >>> # Self-attention with 512 dimensions and 8 heads >>> self_attn = Attention(query_dim=512) >>> x = torch.randn(32, 16, 512) # (batch_size, seq_len, dim) >>> out = self_attn(x) # (32, 16, 512) >>> # Cross-attention >>> cross_attn = Attention(query_dim=512, context_dim=256) >>> query = torch.randn(32, 16, 512) >>> context = torch.randn(32, 8, 256) >>> out = cross_attn(query, context) # (32, 16, 512) """ def __init__( self, query_dim: int, context_dim: Optional[int] = None, n_heads: int = 8, head_dim: int = 64, dropout: float = 0.0, device=None, dtype=None, operations=None, ) -> None: super().__init__() logging.debug( f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using " f"{n_heads} heads with a dimension of {head_dim}." ) self.is_selfattn = context_dim is None # self attention context_dim = query_dim if context_dim is None else context_dim inner_dim = head_dim * n_heads self.n_heads = n_heads self.head_dim = head_dim self.query_dim = query_dim self.context_dim = context_dim self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype) self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype) self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype) self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype) self.v_norm = nn.Identity() self.output_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype) self.output_dropout = nn.Dropout(dropout) if dropout > 1e-4 else nn.Identity() self.attn_op = torch_attention_op self._query_dim = query_dim self._context_dim = context_dim self._inner_dim = inner_dim def compute_qkv( self, x: torch.Tensor, context: Optional[torch.Tensor] = None, rope_emb: Optional[torch.Tensor] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: q = self.q_proj(x) context = x if context is None else context k = self.k_proj(context) v = self.v_proj(context) q, k, v = map( lambda t: rearrange(t, "b ... (h d) -> b ... h d", h=self.n_heads, d=self.head_dim), (q, k, v), ) def apply_norm_and_rotary_pos_emb( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, rope_emb: Optional[torch.Tensor] ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: q = self.q_norm(q) k = self.k_norm(k) v = self.v_norm(v) if self.is_selfattn and rope_emb is not None: # only apply to self-attention! q = apply_rotary_pos_emb(q, rope_emb) k = apply_rotary_pos_emb(k, rope_emb) return q, k, v q, k, v = apply_norm_and_rotary_pos_emb(q, k, v, rope_emb) return q, k, v def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: result = self.attn_op(q, k, v) # [B, S, H, D] return self.output_dropout(self.output_proj(result)) def forward( self, x: torch.Tensor, context: Optional[torch.Tensor] = None, rope_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Args: x (Tensor): The query tensor of shape [B, Mq, K] context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None """ q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb) return self.compute_attention(q, k, v) class Timesteps(nn.Module): def __init__(self, num_channels: int): super().__init__() self.num_channels = num_channels def forward(self, timesteps_B_T: torch.Tensor) -> torch.Tensor: assert timesteps_B_T.ndim == 2, f"Expected 2D input, got {timesteps_B_T.ndim}" timesteps = timesteps_B_T.flatten().float() half_dim = self.num_channels // 2 exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - 0.0) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] sin_emb = torch.sin(emb) cos_emb = torch.cos(emb) emb = torch.cat([cos_emb, sin_emb], dim=-1) return rearrange(emb, "(b t) d -> b t d", b=timesteps_B_T.shape[0], t=timesteps_B_T.shape[1]) class TimestepEmbedding(nn.Module): def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, device=None, dtype=None, operations=None): super().__init__() logging.debug( f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility." ) self.in_dim = in_features self.out_dim = out_features self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, device=device, dtype=dtype) self.activation = nn.SiLU() self.use_adaln_lora = use_adaln_lora if use_adaln_lora: self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, device=device, dtype=dtype) else: self.linear_2 = operations.Linear(out_features, out_features, bias=False, device=device, dtype=dtype) def forward(self, sample: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: emb = self.linear_1(sample) emb = self.activation(emb) emb = self.linear_2(emb) if self.use_adaln_lora: adaln_lora_B_T_3D = emb emb_B_T_D = sample else: adaln_lora_B_T_3D = None emb_B_T_D = emb return emb_B_T_D, adaln_lora_B_T_3D class PatchEmbed(nn.Module): """ PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers, depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions, making it suitable for video and image processing tasks. It supports dividing the input into patches and embedding each patch into a vector of size `out_channels`. Parameters: - spatial_patch_size (int): The size of each spatial patch. - temporal_patch_size (int): The size of each temporal patch. - in_channels (int): Number of input channels. Default: 3. - out_channels (int): The dimension of the embedding vector for each patch. Default: 768. - bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True. """ def __init__( self, spatial_patch_size: int, temporal_patch_size: int, in_channels: int = 3, out_channels: int = 768, device=None, dtype=None, operations=None ): super().__init__() self.spatial_patch_size = spatial_patch_size self.temporal_patch_size = temporal_patch_size self.proj = nn.Sequential( Rearrange( "b c (t r) (h m) (w n) -> b t h w (c r m n)", r=temporal_patch_size, m=spatial_patch_size, n=spatial_patch_size, ), operations.Linear( in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=False, device=device, dtype=dtype ), ) self.dim = in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size def forward(self, x: torch.Tensor) -> torch.Tensor: """ Forward pass of the PatchEmbed module. Parameters: - x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where B is the batch size, C is the number of channels, T is the temporal dimension, H is the height, and W is the width of the input. Returns: - torch.Tensor: The embedded patches as a tensor, with shape b t h w c. """ assert x.dim() == 5 _, _, T, H, W = x.shape assert ( H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0 ), f"H,W {(H, W)} should be divisible by spatial_patch_size {self.spatial_patch_size}" assert T % self.temporal_patch_size == 0 x = self.proj(x) return x class FinalLayer(nn.Module): """ The final layer of video DiT. """ def __init__( self, hidden_size: int, spatial_patch_size: int, temporal_patch_size: int, out_channels: int, use_adaln_lora: bool = False, adaln_lora_dim: int = 256, device=None, dtype=None, operations=None ): super().__init__() self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = operations.Linear( hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype ) self.hidden_size = hidden_size self.n_adaln_chunks = 2 self.use_adaln_lora = use_adaln_lora self.adaln_lora_dim = adaln_lora_dim if use_adaln_lora: self.adaln_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, adaln_lora_dim, bias=False, device=device, dtype=dtype), operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype), ) else: self.adaln_modulation = nn.Sequential( nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype) ) def forward( self, x_B_T_H_W_D: torch.Tensor, emb_B_T_D: torch.Tensor, adaln_lora_B_T_3D: Optional[torch.Tensor] = None, ): if self.use_adaln_lora: assert adaln_lora_B_T_3D is not None shift_B_T_D, scale_B_T_D = ( self.adaln_modulation(emb_B_T_D) + adaln_lora_B_T_3D[:, :, : 2 * self.hidden_size] ).chunk(2, dim=-1) else: shift_B_T_D, scale_B_T_D = self.adaln_modulation(emb_B_T_D).chunk(2, dim=-1) shift_B_T_1_1_D, scale_B_T_1_1_D = rearrange(shift_B_T_D, "b t d -> b t 1 1 d"), rearrange( scale_B_T_D, "b t d -> b t 1 1 d" ) def _fn( _x_B_T_H_W_D: torch.Tensor, _norm_layer: nn.Module, _scale_B_T_1_1_D: torch.Tensor, _shift_B_T_1_1_D: torch.Tensor, ) -> torch.Tensor: return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D x_B_T_H_W_D = _fn(x_B_T_H_W_D, self.layer_norm, scale_B_T_1_1_D, shift_B_T_1_1_D) x_B_T_H_W_O = self.linear(x_B_T_H_W_D) return x_B_T_H_W_O class Block(nn.Module): """ A transformer block that combines self-attention, cross-attention and MLP layers with AdaLN modulation. Each component (self-attention, cross-attention, MLP) has its own layer normalization and AdaLN modulation. Parameters: x_dim (int): Dimension of input features context_dim (int): Dimension of context features for cross-attention num_heads (int): Number of attention heads mlp_ratio (float): Multiplier for MLP hidden dimension. Default: 4.0 use_adaln_lora (bool): Whether to use AdaLN-LoRA modulation. Default: False adaln_lora_dim (int): Hidden dimension for AdaLN-LoRA layers. Default: 256 The block applies the following sequence: 1. Self-attention with AdaLN modulation 2. Cross-attention with AdaLN modulation 3. MLP with AdaLN modulation Each component uses skip connections and layer normalization. """ def __init__( self, x_dim: int, context_dim: int, num_heads: int, mlp_ratio: float = 4.0, use_adaln_lora: bool = False, adaln_lora_dim: int = 256, device=None, dtype=None, operations=None, ): super().__init__() self.x_dim = x_dim self.layer_norm_self_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype) self.self_attn = Attention(x_dim, None, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations) self.layer_norm_cross_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype) self.cross_attn = Attention( x_dim, context_dim, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations ) self.layer_norm_mlp = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype) self.mlp = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), device=device, dtype=dtype, operations=operations) self.use_adaln_lora = use_adaln_lora if self.use_adaln_lora: self.adaln_modulation_self_attn = nn.Sequential( nn.SiLU(), operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype), operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype), ) self.adaln_modulation_cross_attn = nn.Sequential( nn.SiLU(), operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype), operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype), ) self.adaln_modulation_mlp = nn.Sequential( nn.SiLU(), operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype), operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype), ) else: self.adaln_modulation_self_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype)) self.adaln_modulation_cross_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype)) self.adaln_modulation_mlp = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype)) def forward( self, x_B_T_H_W_D: torch.Tensor, emb_B_T_D: torch.Tensor, crossattn_emb: torch.Tensor, rope_emb_L_1_1_D: Optional[torch.Tensor] = None, adaln_lora_B_T_3D: Optional[torch.Tensor] = None, extra_per_block_pos_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: if extra_per_block_pos_emb is not None: x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb if self.use_adaln_lora: shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = ( self.adaln_modulation_self_attn(emb_B_T_D) + adaln_lora_B_T_3D ).chunk(3, dim=-1) shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = ( self.adaln_modulation_cross_attn(emb_B_T_D) + adaln_lora_B_T_3D ).chunk(3, dim=-1) shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = ( self.adaln_modulation_mlp(emb_B_T_D) + adaln_lora_B_T_3D ).chunk(3, dim=-1) else: shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = self.adaln_modulation_self_attn( emb_B_T_D ).chunk(3, dim=-1) shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = self.adaln_modulation_cross_attn( emb_B_T_D ).chunk(3, dim=-1) shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = self.adaln_modulation_mlp(emb_B_T_D).chunk(3, dim=-1) # Reshape tensors from (B, T, D) to (B, T, 1, 1, D) for broadcasting shift_self_attn_B_T_1_1_D = rearrange(shift_self_attn_B_T_D, "b t d -> b t 1 1 d") scale_self_attn_B_T_1_1_D = rearrange(scale_self_attn_B_T_D, "b t d -> b t 1 1 d") gate_self_attn_B_T_1_1_D = rearrange(gate_self_attn_B_T_D, "b t d -> b t 1 1 d") shift_cross_attn_B_T_1_1_D = rearrange(shift_cross_attn_B_T_D, "b t d -> b t 1 1 d") scale_cross_attn_B_T_1_1_D = rearrange(scale_cross_attn_B_T_D, "b t d -> b t 1 1 d") gate_cross_attn_B_T_1_1_D = rearrange(gate_cross_attn_B_T_D, "b t d -> b t 1 1 d") shift_mlp_B_T_1_1_D = rearrange(shift_mlp_B_T_D, "b t d -> b t 1 1 d") scale_mlp_B_T_1_1_D = rearrange(scale_mlp_B_T_D, "b t d -> b t 1 1 d") gate_mlp_B_T_1_1_D = rearrange(gate_mlp_B_T_D, "b t d -> b t 1 1 d") B, T, H, W, D = x_B_T_H_W_D.shape def _fn(_x_B_T_H_W_D, _norm_layer, _scale_B_T_1_1_D, _shift_B_T_1_1_D): return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D normalized_x_B_T_H_W_D = _fn( x_B_T_H_W_D, self.layer_norm_self_attn, scale_self_attn_B_T_1_1_D, shift_self_attn_B_T_1_1_D, ) result_B_T_H_W_D = rearrange( self.self_attn( # normalized_x_B_T_HW_D, rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"), None, rope_emb=rope_emb_L_1_1_D, ), "b (t h w) d -> b t h w d", t=T, h=H, w=W, ) x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D def _x_fn( _x_B_T_H_W_D: torch.Tensor, layer_norm_cross_attn: Callable, _scale_cross_attn_B_T_1_1_D: torch.Tensor, _shift_cross_attn_B_T_1_1_D: torch.Tensor, ) -> torch.Tensor: _normalized_x_B_T_H_W_D = _fn( _x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D ) _result_B_T_H_W_D = rearrange( self.cross_attn( rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"), crossattn_emb, rope_emb=rope_emb_L_1_1_D, ), "b (t h w) d -> b t h w d", t=T, h=H, w=W, ) return _result_B_T_H_W_D result_B_T_H_W_D = _x_fn( x_B_T_H_W_D, self.layer_norm_cross_attn, scale_cross_attn_B_T_1_1_D, shift_cross_attn_B_T_1_1_D, ) x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D normalized_x_B_T_H_W_D = _fn( x_B_T_H_W_D, self.layer_norm_mlp, scale_mlp_B_T_1_1_D, shift_mlp_B_T_1_1_D, ) result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D) x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D return x_B_T_H_W_D class MiniTrainDIT(nn.Module): """ A clean impl of DIT that can load and reproduce the training results of the original DIT model in~(cosmos 1) A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing. Args: max_img_h (int): Maximum height of the input images. max_img_w (int): Maximum width of the input images. max_frames (int): Maximum number of frames in the video sequence. in_channels (int): Number of input channels (e.g., RGB channels for color images). out_channels (int): Number of output channels. patch_spatial (tuple): Spatial resolution of patches for input processing. patch_temporal (int): Temporal resolution of patches for input processing. concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding. model_channels (int): Base number of channels used throughout the model. num_blocks (int): Number of transformer blocks. num_heads (int): Number of heads in the multi-head attention layers. mlp_ratio (float): Expansion ratio for MLP blocks. crossattn_emb_channels (int): Number of embedding channels for cross-attention. pos_emb_cls (str): Type of positional embeddings. pos_emb_learnable (bool): Whether positional embeddings are learnable. pos_emb_interpolation (str): Method for interpolating positional embeddings. min_fps (int): Minimum frames per second. max_fps (int): Maximum frames per second. use_adaln_lora (bool): Whether to use AdaLN-LoRA. adaln_lora_dim (int): Dimension for AdaLN-LoRA. rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE. rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE. rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE. extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings. extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings. extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings. extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings. """ def __init__( self, max_img_h: int, max_img_w: int, max_frames: int, in_channels: int, out_channels: int, patch_spatial: int, # tuple, patch_temporal: int, concat_padding_mask: bool = True, # attention settings model_channels: int = 768, num_blocks: int = 10, num_heads: int = 16, mlp_ratio: float = 4.0, # cross attention settings crossattn_emb_channels: int = 1024, # positional embedding settings pos_emb_cls: str = "sincos", pos_emb_learnable: bool = False, pos_emb_interpolation: str = "crop", min_fps: int = 1, max_fps: int = 30, use_adaln_lora: bool = False, adaln_lora_dim: int = 256, rope_h_extrapolation_ratio: float = 1.0, rope_w_extrapolation_ratio: float = 1.0, rope_t_extrapolation_ratio: float = 1.0, extra_per_block_abs_pos_emb: bool = False, extra_h_extrapolation_ratio: float = 1.0, extra_w_extrapolation_ratio: float = 1.0, extra_t_extrapolation_ratio: float = 1.0, rope_enable_fps_modulation: bool = True, image_model=None, device=None, dtype=None, operations=None, ) -> None: super().__init__() self.dtype = dtype self.max_img_h = max_img_h self.max_img_w = max_img_w self.max_frames = max_frames self.in_channels = in_channels self.out_channels = out_channels self.patch_spatial = patch_spatial self.patch_temporal = patch_temporal self.num_heads = num_heads self.num_blocks = num_blocks self.model_channels = model_channels self.concat_padding_mask = concat_padding_mask # positional embedding settings self.pos_emb_cls = pos_emb_cls self.pos_emb_learnable = pos_emb_learnable self.pos_emb_interpolation = pos_emb_interpolation self.min_fps = min_fps self.max_fps = max_fps self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio self.rope_enable_fps_modulation = rope_enable_fps_modulation self.build_pos_embed(device=device, dtype=dtype) self.use_adaln_lora = use_adaln_lora self.adaln_lora_dim = adaln_lora_dim self.t_embedder = nn.Sequential( Timesteps(model_channels), TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, device=device, dtype=dtype, operations=operations,), ) in_channels = in_channels + 1 if concat_padding_mask else in_channels self.x_embedder = PatchEmbed( spatial_patch_size=patch_spatial, temporal_patch_size=patch_temporal, in_channels=in_channels, out_channels=model_channels, device=device, dtype=dtype, operations=operations, ) self.blocks = nn.ModuleList( [ Block( x_dim=model_channels, context_dim=crossattn_emb_channels, num_heads=num_heads, mlp_ratio=mlp_ratio, use_adaln_lora=use_adaln_lora, adaln_lora_dim=adaln_lora_dim, device=device, dtype=dtype, operations=operations, ) for _ in range(num_blocks) ] ) self.final_layer = FinalLayer( hidden_size=self.model_channels, spatial_patch_size=self.patch_spatial, temporal_patch_size=self.patch_temporal, out_channels=self.out_channels, use_adaln_lora=self.use_adaln_lora, adaln_lora_dim=self.adaln_lora_dim, device=device, dtype=dtype, operations=operations, ) self.t_embedding_norm = operations.RMSNorm(model_channels, eps=1e-6, device=device, dtype=dtype) def build_pos_embed(self, device=None, dtype=None) -> None: if self.pos_emb_cls == "rope3d": cls_type = VideoRopePosition3DEmb else: raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}") logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}") kwargs = dict( model_channels=self.model_channels, len_h=self.max_img_h // self.patch_spatial, len_w=self.max_img_w // self.patch_spatial, len_t=self.max_frames // self.patch_temporal, max_fps=self.max_fps, min_fps=self.min_fps, is_learnable=self.pos_emb_learnable, interpolation=self.pos_emb_interpolation, head_dim=self.model_channels // self.num_heads, h_extrapolation_ratio=self.rope_h_extrapolation_ratio, w_extrapolation_ratio=self.rope_w_extrapolation_ratio, t_extrapolation_ratio=self.rope_t_extrapolation_ratio, enable_fps_modulation=self.rope_enable_fps_modulation, device=device, ) self.pos_embedder = cls_type( **kwargs, # type: ignore ) if self.extra_per_block_abs_pos_emb: kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio kwargs["device"] = device kwargs["dtype"] = dtype self.extra_pos_embedder = LearnablePosEmbAxis( **kwargs, # type: ignore ) def prepare_embedded_sequence( self, x_B_C_T_H_W: torch.Tensor, fps: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]: """ Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks. Args: x_B_C_T_H_W (torch.Tensor): video fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required. If None, a default value (`self.base_fps`) will be used. padding_mask (Optional[torch.Tensor]): current it is not used Returns: Tuple[torch.Tensor, Optional[torch.Tensor]]: - A tensor of shape (B, T, H, W, D) with the embedded sequence. - An optional positional embedding tensor, returned only if the positional embedding class (`self.pos_emb_cls`) includes 'rope'. Otherwise, None. Notes: - If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor. - The method of applying positional embeddings depends on the value of `self.pos_emb_cls`. - If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using the `self.pos_embedder` with the shape [T, H, W]. - If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the `self.pos_embedder` with the fps tensor. - Otherwise, the positional embeddings are generated without considering fps. """ if self.concat_padding_mask: if padding_mask is None: padding_mask = torch.zeros(x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[3], x_B_C_T_H_W.shape[4], dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device) else: padding_mask = transforms.functional.resize( padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST ) x_B_C_T_H_W = torch.cat( [x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1 ) x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W) if self.extra_per_block_abs_pos_emb: extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype) else: extra_pos_emb = None if "rope" in self.pos_emb_cls.lower(): return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D] return x_B_T_H_W_D, None, extra_pos_emb def unpatchify(self, x_B_T_H_W_M: torch.Tensor) -> torch.Tensor: x_B_C_Tt_Hp_Wp = rearrange( x_B_T_H_W_M, "B T H W (p1 p2 t C) -> B C (T t) (H p1) (W p2)", p1=self.patch_spatial, p2=self.patch_spatial, t=self.patch_temporal, ) return x_B_C_Tt_Hp_Wp def forward( self, x: torch.Tensor, timesteps: torch.Tensor, context: torch.Tensor, fps: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, **kwargs, ): x_B_C_T_H_W = x timesteps_B_T = timesteps crossattn_emb = context """ Args: x: (B, C, T, H, W) tensor of spatial-temp inputs timesteps: (B, ) tensor of timesteps crossattn_emb: (B, N, D) tensor of cross-attention embeddings """ x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence( x_B_C_T_H_W, fps=fps, padding_mask=padding_mask, ) if timesteps_B_T.ndim == 1: timesteps_B_T = timesteps_B_T.unsqueeze(1) t_embedding_B_T_D, adaln_lora_B_T_3D = self.t_embedder[1](self.t_embedder[0](timesteps_B_T).to(x_B_T_H_W_D.dtype)) t_embedding_B_T_D = self.t_embedding_norm(t_embedding_B_T_D) # for logging purpose affline_scale_log_info = {} affline_scale_log_info["t_embedding_B_T_D"] = t_embedding_B_T_D.detach() self.affline_scale_log_info = affline_scale_log_info self.affline_emb = t_embedding_B_T_D self.crossattn_emb = crossattn_emb if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None: assert ( x_B_T_H_W_D.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape ), f"{x_B_T_H_W_D.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape}" block_kwargs = { "rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0), "adaln_lora_B_T_3D": adaln_lora_B_T_3D, "extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, } for block in self.blocks: x_B_T_H_W_D = block( x_B_T_H_W_D, t_embedding_B_T_D, crossattn_emb, **block_kwargs, ) x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D) x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O) return x_B_C_Tt_Hp_Wp