# pylint: skip-file
import math
import re

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from einops.layers.torch import Rearrange
from torch import Tensor
from torch.nn import functional as F

from .timm.drop import DropPath
from .timm.weight_init import trunc_normal_


def img2windows(img, H_sp, W_sp):
    """
    Input: Image (B, C, H, W)
    Output: Window Partition (B', N, C)
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = (
        img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
    )
    return img_perm


def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    Input: Window Partition (B', N, C)
    Output: Image (B, H, W, C)
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img


class SpatialGate(nn.Module):
    """Spatial-Gate.
    Args:
        dim (int): Half of input channels.
    """

    def __init__(self, dim):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.conv = nn.Conv2d(
            dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
        )  # DW Conv

    def forward(self, x, H, W):
        # Split
        x1, x2 = x.chunk(2, dim=-1)
        B, N, C = x.shape
        x2 = (
            self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
            .flatten(2)
            .transpose(-1, -2)
            .contiguous()
        )

        return x1 * x2


class SGFN(nn.Module):
    """Spatial-Gate Feed-Forward Network.
    Args:
        in_features (int): Number of input channels.
        hidden_features (int | None): Number of hidden channels. Default: None
        out_features (int | None): Number of output channels. Default: None
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        drop (float): Dropout rate. Default: 0.0
    """

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.sg = SpatialGate(hidden_features // 2)
        self.fc2 = nn.Linear(hidden_features // 2, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)

        x = self.sg(x, H, W)
        x = self.drop(x)

        x = self.fc2(x)
        x = self.drop(x)
        return x


class DynamicPosBias(nn.Module):
    # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
    """Dynamic Relative Position Bias.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        residual (bool):  If True, use residual strage to connect conv.
    """

    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads),
        )

    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases)  # 2Gh-1 * 2Gw-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos


class Spatial_Attention(nn.Module):
    """Spatial Window Self-Attention.
    It supports rectangle window (containing square window).
    Args:
        dim (int): Number of input channels.
        idx (int): The indentix of window. (0/1)
        split_size (tuple(int)): Height and Width of spatial window.
        dim_out (int | None): The dimension of the attention output. Default: None
        num_heads (int): Number of attention heads. Default: 6
        attn_drop (float): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float): Dropout ratio of output. Default: 0.0
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
        position_bias (bool): The dynamic relative position bias. Default: True
    """

    def __init__(
        self,
        dim,
        idx,
        split_size=[8, 8],
        dim_out=None,
        num_heads=6,
        attn_drop=0.0,
        proj_drop=0.0,
        qk_scale=None,
        position_bias=True,
    ):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.split_size = split_size
        self.num_heads = num_heads
        self.idx = idx
        self.position_bias = position_bias

        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        if idx == 0:
            H_sp, W_sp = self.split_size[0], self.split_size[1]
        elif idx == 1:
            W_sp, H_sp = self.split_size[0], self.split_size[1]
        else:
            print("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp

        if self.position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
            # generate mother-set
            position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
            position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
            biases = biases.flatten(1).transpose(0, 1).contiguous().float()
            self.register_buffer("rpe_biases", biases)

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(self.H_sp)
            coords_w = torch.arange(self.W_sp)
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
            coords_flatten = torch.flatten(coords, 1)
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()
            relative_coords[:, :, 0] += self.H_sp - 1
            relative_coords[:, :, 1] += self.W_sp - 1
            relative_coords[:, :, 0] *= 2 * self.W_sp - 1
            relative_position_index = relative_coords.sum(-1)
            self.register_buffer("relative_position_index", relative_position_index)

        self.attn_drop = nn.Dropout(attn_drop)

    def im2win(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        x = (
            x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
            .contiguous()
        )
        return x

    def forward(self, qkv, H, W, mask=None):
        """
        Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
        Output: x (B, H, W, C)
        """
        q, k, v = qkv[0], qkv[1], qkv[2]

        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        # partition the q,k,v, image to window
        q = self.im2win(q, H, W)
        k = self.im2win(k, H, W)
        v = self.im2win(v, H, W)

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)  # B head N C @ B head C N --> B head N N

        # calculate drpe
        if self.position_bias:
            pos = self.pos(self.rpe_biases)
            # select position bias
            relative_position_bias = pos[self.relative_position_index.view(-1)].view(
                self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
            )
            relative_position_bias = relative_position_bias.permute(
                2, 0, 1
            ).contiguous()
            attn = attn + relative_position_bias.unsqueeze(0)

        N = attn.shape[3]

        # use mask for shift window
        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
                0
            )
            attn = attn.view(-1, self.num_heads, N, N)

        attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
        attn = self.attn_drop(attn)

        x = attn @ v
        x = x.transpose(1, 2).reshape(
            -1, self.H_sp * self.W_sp, C
        )  # B head N N @ B head N C

        # merge the window, window to image
        x = windows2img(x, self.H_sp, self.W_sp, H, W)  # B H' W' C

        return x


class Adaptive_Spatial_Attention(nn.Module):
    # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
    """Adaptive Spatial Self-Attention
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 6
        split_size (tuple(int)): Height and Width of spatial window.
        shift_size (tuple(int)): Shift size for spatial window.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
        drop (float): Dropout rate. Default: 0.0
        attn_drop (float): Attention dropout rate. Default: 0.0
        rg_idx (int): The indentix of Residual Group (RG)
        b_idx (int): The indentix of Block in each RG
    """

    def __init__(
        self,
        dim,
        num_heads,
        reso=64,
        split_size=[8, 8],
        shift_size=[1, 2],
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        rg_idx=0,
        b_idx=0,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.split_size = split_size
        self.shift_size = shift_size
        self.b_idx = b_idx
        self.rg_idx = rg_idx
        self.patches_resolution = reso
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        assert (
            0 <= self.shift_size[0] < self.split_size[0]
        ), "shift_size must in 0-split_size0"
        assert (
            0 <= self.shift_size[1] < self.split_size[1]
        ), "shift_size must in 0-split_size1"

        self.branch_num = 2

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(drop)

        self.attns = nn.ModuleList(
            [
                Spatial_Attention(
                    dim // 2,
                    idx=i,
                    split_size=split_size,
                    num_heads=num_heads // 2,
                    dim_out=dim // 2,
                    qk_scale=qk_scale,
                    attn_drop=attn_drop,
                    proj_drop=drop,
                    position_bias=True,
                )
                for i in range(self.branch_num)
            ]
        )

        if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
            self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
        ):
            attn_mask = self.calculate_mask(
                self.patches_resolution, self.patches_resolution
            )
            self.register_buffer("attn_mask_0", attn_mask[0])
            self.register_buffer("attn_mask_1", attn_mask[1])
        else:
            attn_mask = None
            self.register_buffer("attn_mask_0", None)
            self.register_buffer("attn_mask_1", None)

        self.dwconv = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
            nn.BatchNorm2d(dim),
            nn.GELU(),
        )
        self.channel_interaction = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(dim, dim // 8, kernel_size=1),
            nn.BatchNorm2d(dim // 8),
            nn.GELU(),
            nn.Conv2d(dim // 8, dim, kernel_size=1),
        )
        self.spatial_interaction = nn.Sequential(
            nn.Conv2d(dim, dim // 16, kernel_size=1),
            nn.BatchNorm2d(dim // 16),
            nn.GELU(),
            nn.Conv2d(dim // 16, 1, kernel_size=1),
        )

    def calculate_mask(self, H, W):
        # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
        # calculate attention mask for shift window
        img_mask_0 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=0
        img_mask_1 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=1
        h_slices_0 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        w_slices_0 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )

        h_slices_1 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )
        w_slices_1 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        cnt = 0
        for h in h_slices_0:
            for w in w_slices_0:
                img_mask_0[:, h, w, :] = cnt
                cnt += 1
        cnt = 0
        for h in h_slices_1:
            for w in w_slices_1:
                img_mask_1[:, h, w, :] = cnt
                cnt += 1

        # calculate mask for window-0
        img_mask_0 = img_mask_0.view(
            1,
            H // self.split_size[0],
            self.split_size[0],
            W // self.split_size[1],
            self.split_size[1],
            1,
        )
        img_mask_0 = (
            img_mask_0.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[0], self.split_size[1], 1)
        )  # nW, sw[0], sw[1], 1
        mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
        attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
        attn_mask_0 = attn_mask_0.masked_fill(
            attn_mask_0 != 0, float(-100.0)
        ).masked_fill(attn_mask_0 == 0, float(0.0))

        # calculate mask for window-1
        img_mask_1 = img_mask_1.view(
            1,
            H // self.split_size[1],
            self.split_size[1],
            W // self.split_size[0],
            self.split_size[0],
            1,
        )
        img_mask_1 = (
            img_mask_1.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[1], self.split_size[0], 1)
        )  # nW, sw[1], sw[0], 1
        mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
        attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
        attn_mask_1 = attn_mask_1.masked_fill(
            attn_mask_1 != 0, float(-100.0)
        ).masked_fill(attn_mask_1 == 0, float(0.0))

        return attn_mask_0, attn_mask_1

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        B, L, C = x.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3)  # 3, B, HW, C
        # V without partition
        v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)

        # image padding
        max_split_size = max(self.split_size[0], self.split_size[1])
        pad_l = pad_t = 0
        pad_r = (max_split_size - W % max_split_size) % max_split_size
        pad_b = (max_split_size - H % max_split_size) % max_split_size

        qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2)  # 3B C H W
        qkv = (
            F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
            .reshape(3, B, C, -1)
            .transpose(-2, -1)
        )  # l r t b
        _H = pad_b + H
        _W = pad_r + W
        _L = _H * _W

        # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
        # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
        if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
            self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
        ):
            qkv = qkv.view(3, B, _H, _W, C)
            qkv_0 = torch.roll(
                qkv[:, :, :, :, : C // 2],
                shifts=(-self.shift_size[0], -self.shift_size[1]),
                dims=(2, 3),
            )
            qkv_0 = qkv_0.view(3, B, _L, C // 2)
            qkv_1 = torch.roll(
                qkv[:, :, :, :, C // 2 :],
                shifts=(-self.shift_size[1], -self.shift_size[0]),
                dims=(2, 3),
            )
            qkv_1 = qkv_1.view(3, B, _L, C // 2)

            if self.patches_resolution != _H or self.patches_resolution != _W:
                mask_tmp = self.calculate_mask(_H, _W)
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
            else:
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)

            x1 = torch.roll(
                x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
            )
            x2 = torch.roll(
                x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
            )
            x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
            x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
            # attention output
            attened_x = torch.cat([x1, x2], dim=2)

        else:
            x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            # attention output
            attened_x = torch.cat([x1, x2], dim=2)

        # convolution output
        conv_x = self.dwconv(v)

        # Adaptive Interaction Module (AIM)
        # C-Map (before sigmoid)
        channel_map = (
            self.channel_interaction(conv_x)
            .permute(0, 2, 3, 1)
            .contiguous()
            .view(B, 1, C)
        )
        # S-Map (before sigmoid)
        attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
        spatial_map = self.spatial_interaction(attention_reshape)

        # C-I
        attened_x = attened_x * torch.sigmoid(channel_map)
        # S-I
        conv_x = torch.sigmoid(spatial_map) * conv_x
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)

        x = attened_x + conv_x

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Adaptive_Channel_Attention(nn.Module):
    # The implementation builds on XCiT code https://github.com/facebookresearch/xcit
    """Adaptive Channel Self-Attention
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 6
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
        attn_drop (float): Attention dropout rate. Default: 0.0
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.dwconv = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
            nn.BatchNorm2d(dim),
            nn.GELU(),
        )
        self.channel_interaction = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(dim, dim // 8, kernel_size=1),
            nn.BatchNorm2d(dim // 8),
            nn.GELU(),
            nn.Conv2d(dim // 8, dim, kernel_size=1),
        )
        self.spatial_interaction = nn.Sequential(
            nn.Conv2d(dim, dim // 16, kernel_size=1),
            nn.BatchNorm2d(dim // 16),
            nn.GELU(),
            nn.Conv2d(dim // 16, 1, kernel_size=1),
        )

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
        qkv = qkv.permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q.transpose(-2, -1)
        k = k.transpose(-2, -1)
        v = v.transpose(-2, -1)

        v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # attention output
        attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)

        # convolution output
        conv_x = self.dwconv(v_)

        # Adaptive Interaction Module (AIM)
        # C-Map (before sigmoid)
        attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
        channel_map = self.channel_interaction(attention_reshape)
        # S-Map (before sigmoid)
        spatial_map = (
            self.spatial_interaction(conv_x)
            .permute(0, 2, 3, 1)
            .contiguous()
            .view(B, N, 1)
        )

        # S-I
        attened_x = attened_x * torch.sigmoid(spatial_map)
        # C-I
        conv_x = conv_x * torch.sigmoid(channel_map)
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)

        x = attened_x + conv_x

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class DATB(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        reso=64,
        split_size=[2, 4],
        shift_size=[1, 2],
        expansion_factor=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        rg_idx=0,
        b_idx=0,
    ):
        super().__init__()

        self.norm1 = norm_layer(dim)

        if b_idx % 2 == 0:
            # DSTB
            self.attn = Adaptive_Spatial_Attention(
                dim,
                num_heads=num_heads,
                reso=reso,
                split_size=split_size,
                shift_size=shift_size,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                rg_idx=rg_idx,
                b_idx=b_idx,
            )
        else:
            # DCTB
            self.attn = Adaptive_Channel_Attention(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop,
            )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        ffn_hidden_dim = int(dim * expansion_factor)
        self.ffn = SGFN(
            in_features=dim,
            hidden_features=ffn_hidden_dim,
            out_features=dim,
            act_layer=act_layer,
        )
        self.norm2 = norm_layer(dim)

    def forward(self, x, x_size):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """
        H, W = x_size
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.ffn(self.norm2(x), H, W))

        return x


class ResidualGroup(nn.Module):
    """ResidualGroup
    Args:
        dim (int): Number of input channels.
        reso (int): Input resolution.
        num_heads (int): Number of attention heads.
        split_size (tuple(int)): Height and Width of spatial window.
        expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop (float): Dropout rate. Default: 0
        attn_drop(float): Attention dropout rate. Default: 0
        drop_paths (float | None): Stochastic depth rate.
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
        depth (int): Number of dual aggregation Transformer blocks in residual group.
        use_chk (bool): Whether to use checkpointing to save memory.
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(
        self,
        dim,
        reso,
        num_heads,
        split_size=[2, 4],
        expansion_factor=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_paths=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        depth=2,
        use_chk=False,
        resi_connection="1conv",
        rg_idx=0,
    ):
        super().__init__()
        self.use_chk = use_chk
        self.reso = reso

        self.blocks = nn.ModuleList(
            [
                DATB(
                    dim=dim,
                    num_heads=num_heads,
                    reso=reso,
                    split_size=split_size,
                    shift_size=[split_size[0] // 2, split_size[1] // 2],
                    expansion_factor=expansion_factor,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_paths[i],
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                    rg_idx=rg_idx,
                    b_idx=i,
                )
                for i in range(depth)
            ]
        )

        if resi_connection == "1conv":
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == "3conv":
            self.conv = nn.Sequential(
                nn.Conv2d(dim, dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim, 3, 1, 1),
            )

    def forward(self, x, x_size):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """
        H, W = x_size
        res = x
        for blk in self.blocks:
            if self.use_chk:
                x = checkpoint.checkpoint(blk, x, x_size)
            else:
                x = blk(x, x_size)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
        x = self.conv(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        x = res + x

        return x


class Upsample(nn.Sequential):
    """Upsample module.
    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(
                f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
            )
        super(Upsample, self).__init__(*m)


class UpsampleOneStep(nn.Sequential):
    """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
       Used in lightweight SR to save parameters.

    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.

    """

    def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
        self.num_feat = num_feat
        self.input_resolution = input_resolution
        m = []
        m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
        m.append(nn.PixelShuffle(scale))
        super(UpsampleOneStep, self).__init__(*m)

    def flops(self):
        h, w = self.input_resolution
        flops = h * w * self.num_feat * 3 * 9
        return flops


class DAT(nn.Module):
    """Dual Aggregation Transformer
    Args:
        img_size (int): Input image size. Default: 64
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 180
        depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
        split_size (tuple(int)): Height and Width of spatial window.
        num_heads (tuple(int)): Number of attention heads in different residual groups.
        expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
        use_chk (bool): Whether to use checkpointing to save memory.
        upscale: Upscale factor. 2/3/4 for image SR
        img_range: Image range. 1. or 255.
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(self, state_dict):
        super().__init__()

        # defaults
        img_size = 64
        in_chans = 3
        embed_dim = 180
        split_size = [2, 4]
        depth = [2, 2, 2, 2]
        num_heads = [2, 2, 2, 2]
        expansion_factor = 4.0
        qkv_bias = True
        qk_scale = None
        drop_rate = 0.0
        attn_drop_rate = 0.0
        drop_path_rate = 0.1
        act_layer = nn.GELU
        norm_layer = nn.LayerNorm
        use_chk = False
        upscale = 2
        img_range = 1.0
        resi_connection = "1conv"
        upsampler = "pixelshuffle"

        self.model_arch = "DAT"
        self.sub_type = "SR"
        self.state = state_dict

        state_keys = state_dict.keys()
        if "conv_before_upsample.0.weight" in state_keys:
            if "conv_up1.weight" in state_keys:
                upsampler = "nearest+conv"
            else:
                upsampler = "pixelshuffle"
                supports_fp16 = False
        elif "upsample.0.weight" in state_keys:
            upsampler = "pixelshuffledirect"
        else:
            upsampler = ""

        num_feat = (
            state_dict.get("conv_before_upsample.0.weight", None).shape[1]
            if state_dict.get("conv_before_upsample.weight", None)
            else 64
        )

        num_in_ch = state_dict["conv_first.weight"].shape[1]
        in_chans = num_in_ch
        if "conv_last.weight" in state_keys:
            num_out_ch = state_dict["conv_last.weight"].shape[0]
        else:
            num_out_ch = num_in_ch

        upscale = 1
        if upsampler == "nearest+conv":
            upsample_keys = [
                x for x in state_keys if "conv_up" in x and "bias" not in x
            ]

            for upsample_key in upsample_keys:
                upscale *= 2
        elif upsampler == "pixelshuffle":
            upsample_keys = [
                x
                for x in state_keys
                if "upsample" in x and "conv" not in x and "bias" not in x
            ]
            for upsample_key in upsample_keys:
                shape = state_dict[upsample_key].shape[0]
                upscale *= math.sqrt(shape // num_feat)
            upscale = int(upscale)
        elif upsampler == "pixelshuffledirect":
            upscale = int(
                math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch)
            )

        max_layer_num = 0
        max_block_num = 0
        for key in state_keys:
            result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key)
            if result:
                layer_num, block_num = result.groups()
                max_layer_num = max(max_layer_num, int(layer_num))
                max_block_num = max(max_block_num, int(block_num))

        depth = [max_block_num + 1 for _ in range(max_layer_num + 1)]

        if "layers.0.blocks.1.attn.temperature" in state_keys:
            num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0]
            num_heads = [num_heads_num for _ in range(max_layer_num + 1)]
        else:
            num_heads = depth

        embed_dim = state_dict["conv_first.weight"].shape[0]
        expansion_factor = float(
            state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim
        )

        # TODO: could actually count the layers, but this should do
        if "layers.0.conv.4.weight" in state_keys:
            resi_connection = "3conv"
        else:
            resi_connection = "1conv"

        if "layers.0.blocks.2.attn.attn_mask_0" in state_keys:
            attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[
                "layers.0.blocks.2.attn.attn_mask_0"
            ].shape

            img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))

        if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys:
            split_sizes = (
                state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
            )
            split_size = [int(x) for x in split_sizes]

        self.in_nc = num_in_ch
        self.out_nc = num_out_ch
        self.num_feat = num_feat
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.depth = depth
        self.scale = upscale
        self.upsampler = upsampler
        self.img_size = img_size
        self.img_range = img_range
        self.expansion_factor = expansion_factor
        self.resi_connection = resi_connection
        self.split_size = split_size

        self.supports_fp16 = False  # Too much weirdness to support this at the moment
        self.supports_bfp16 = True
        self.min_size_restriction = 16

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # ------------------------- 1, Shallow Feature Extraction ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, Deep Feature Extraction ------------------------- #
        self.num_layers = len(depth)
        self.use_chk = use_chk
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        heads = num_heads

        self.before_RG = nn.Sequential(
            Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
        )

        curr_dim = embed_dim
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
        ]  # stochastic depth decay rule

        self.layers = nn.ModuleList()
        for i in range(self.num_layers):
            layer = ResidualGroup(
                dim=embed_dim,
                num_heads=heads[i],
                reso=img_size,
                split_size=split_size,
                expansion_factor=expansion_factor,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
                act_layer=act_layer,
                norm_layer=norm_layer,
                depth=depth[i],
                use_chk=use_chk,
                resi_connection=resi_connection,
                rg_idx=i,
            )
            self.layers.append(layer)

        self.norm = norm_layer(curr_dim)
        # build the last conv layer in deep feature extraction
        if resi_connection == "1conv":
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == "3conv":
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(
                nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
            )

        # ------------------------- 3, Reconstruction ------------------------- #
        if self.upsampler == "pixelshuffle":
            # for classical SR
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
            )
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == "pixelshuffledirect":
            # for lightweight SR (to save parameters)
            self.upsample = UpsampleOneStep(
                upscale, embed_dim, num_out_ch, (img_size, img_size)
            )

        self.apply(self._init_weights)
        self.load_state_dict(state_dict, strict=True)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(
            m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
        ):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward_features(self, x):
        _, _, H, W = x.shape
        x_size = [H, W]
        x = self.before_RG(x)
        for layer in self.layers:
            x = layer(x, x_size)
        x = self.norm(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)

        return x

    def forward(self, x):
        """
        Input: x: (B, C, H, W)
        """
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == "pixelshuffle":
            # for image SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == "pixelshuffledirect":
            # for lightweight SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)

        x = x / self.img_range + self.mean
        return x