import torch import comfy.ops def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"): if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()): padding_mode = "reflect" pad = () for i in range(img.ndim - 2): pad = (0, (patch_size[i] - img.shape[i + 2] % patch_size[i]) % patch_size[i]) + pad return torch.nn.functional.pad(img, pad, mode=padding_mode) try: rms_norm_torch = torch.nn.functional.rms_norm except: rms_norm_torch = None def rms_norm(x, weight=None, eps=1e-6): if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()): if weight is None: return rms_norm_torch(x, (x.shape[-1],), eps=eps) else: return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps) else: r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps) if weight is None: return r else: return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)