import numpy as np import torch import torch.nn.functional as F from PIL import Image import math import comfy.utils import comfy.model_management class Blend: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image1": ("IMAGE",), "image2": ("IMAGE",), "blend_factor": ("FLOAT", { "default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01 }), "blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light", "difference"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blend_images" CATEGORY = "image/postprocessing" def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str): image2 = image2.to(image1.device) if image1.shape != image2.shape: image2 = image2.permute(0, 3, 1, 2) image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center') image2 = image2.permute(0, 2, 3, 1) blended_image = self.blend_mode(image1, image2, blend_mode) blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor blended_image = torch.clamp(blended_image, 0, 1) return (blended_image,) def blend_mode(self, img1, img2, mode): if mode == "normal": return img2 elif mode == "multiply": return img1 * img2 elif mode == "screen": return 1 - (1 - img1) * (1 - img2) elif mode == "overlay": return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2)) elif mode == "soft_light": return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1)) elif mode == "difference": return img1 - img2 else: raise ValueError(f"Unsupported blend mode: {mode}") def g(self, x): return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x)) def gaussian_kernel(kernel_size: int, sigma: float, device=None): x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") d = torch.sqrt(x * x + y * y) g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) return g / g.sum() class Blur: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "blur_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "sigma": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "blur" CATEGORY = "image/postprocessing" def blur(self, image: torch.Tensor, blur_radius: int, sigma: float): if blur_radius == 0: return (image,) image = image.to(comfy.model_management.get_torch_device()) batch_size, height, width, channels = image.shape kernel_size = blur_radius * 2 + 1 kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1) image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] blurred = blurred.permute(0, 2, 3, 1) return (blurred.to(comfy.model_management.intermediate_device()),) class Quantize: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "colors": ("INT", { "default": 256, "min": 1, "max": 256, "step": 1 }), "dither": (["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"],), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "quantize" CATEGORY = "image/postprocessing" def bayer(im, pal_im, order): def normalized_bayer_matrix(n): if n == 0: return np.zeros((1,1), "float32") else: q = 4 ** n m = q * normalized_bayer_matrix(n - 1) return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q num_colors = len(pal_im.getpalette()) // 3 spread = 2 * 256 / num_colors bayer_n = int(math.log2(order)) bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5) result = torch.from_numpy(np.array(im).astype(np.float32)) tw = math.ceil(result.shape[0] / bayer_matrix.shape[0]) th = math.ceil(result.shape[1] / bayer_matrix.shape[1]) tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1) result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255) result = result.to(dtype=torch.uint8) im = Image.fromarray(result.cpu().numpy()) im = im.quantize(palette=pal_im, dither=Image.Dither.NONE) return im def quantize(self, image: torch.Tensor, colors: int, dither: str): batch_size, height, width, _ = image.shape result = torch.zeros_like(image) for b in range(batch_size): im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB') pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836 if dither == "none": quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE) elif dither == "floyd-steinberg": quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG) elif dither.startswith("bayer"): order = int(dither.split('-')[-1]) quantized_image = Quantize.bayer(im, pal_im, order) quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255 result[b] = quantized_array return (result,) class Sharpen: def __init__(self): pass @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "sharpen_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "sigma": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 10.0, "step": 0.01 }), "alpha": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 5.0, "step": 0.01 }), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "sharpen" CATEGORY = "image/postprocessing" def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float): if sharpen_radius == 0: return (image,) batch_size, height, width, channels = image.shape kernel_size = sharpen_radius * 2 + 1 kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10) center = kernel_size // 2 kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0 kernel = kernel.repeat(channels, 1, 1).unsqueeze(1) tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect') sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius] sharpened = sharpened.permute(0, 2, 3, 1) result = torch.clamp(sharpened, 0, 1) return (result,) class ImageScaleToTotalPixels: upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] crop_methods = ["disabled", "center"] @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), "megapixels": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 16.0, "step": 0.01}), }} RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "image/upscaling" def upscale(self, image, upscale_method, megapixels): samples = image.movedim(-1,1) total = int(megapixels * 1024 * 1024) scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2])) width = round(samples.shape[3] * scale_by) height = round(samples.shape[2] * scale_by) s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled") s = s.movedim(1,-1) return (s,) NODE_CLASS_MAPPINGS = { "ImageBlend": Blend, "ImageBlur": Blur, "ImageQuantize": Quantize, "ImageSharpen": Sharpen, "ImageScaleToTotalPixels": ImageScaleToTotalPixels, }