import torch

class LatentFormat:
    scale_factor = 1.0
    latent_channels = 4
    latent_dimensions = 2
    latent_rgb_factors = None
    latent_rgb_factors_bias = None
    taesd_decoder_name = None

    def process_in(self, latent):
        return latent * self.scale_factor

    def process_out(self, latent):
        return latent / self.scale_factor

class SD15(LatentFormat):
    def __init__(self, scale_factor=0.18215):
        self.scale_factor = scale_factor
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3512,  0.2297,  0.3227],
                    [ 0.3250,  0.4974,  0.2350],
                    [-0.2829,  0.1762,  0.2721],
                    [-0.2120, -0.2616, -0.7177]
                ]
        self.taesd_decoder_name = "taesd_decoder"

class SDXL(LatentFormat):
    scale_factor = 0.13025

    def __init__(self):
        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3651,  0.4232,  0.4341],
                    [-0.2533, -0.0042,  0.1068],
                    [ 0.1076,  0.1111, -0.0362],
                    [-0.3165, -0.2492, -0.2188]
                ]
        self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]

        self.taesd_decoder_name = "taesdxl_decoder"

class SDXL_Playground_2_5(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.5
        self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
        self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)

        self.latent_rgb_factors = [
                    #   R        G        B
                    [ 0.3920,  0.4054,  0.4549],
                    [-0.2634, -0.0196,  0.0653],
                    [ 0.0568,  0.1687, -0.0755],
                    [-0.3112, -0.2359, -0.2076]
                ]
        self.taesd_decoder_name = "taesdxl_decoder"

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean


class SD_X4(LatentFormat):
    def __init__(self):
        self.scale_factor = 0.08333
        self.latent_rgb_factors = [
            [-0.2340, -0.3863, -0.3257],
            [ 0.0994,  0.0885, -0.0908],
            [-0.2833, -0.2349, -0.3741],
            [ 0.2523, -0.0055, -0.1651]
        ]

class SC_Prior(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.0
        self.latent_rgb_factors = [
            [-0.0326, -0.0204, -0.0127],
            [-0.1592, -0.0427,  0.0216],
            [ 0.0873,  0.0638, -0.0020],
            [-0.0602,  0.0442,  0.1304],
            [ 0.0800, -0.0313, -0.1796],
            [-0.0810, -0.0638, -0.1581],
            [ 0.1791,  0.1180,  0.0967],
            [ 0.0740,  0.1416,  0.0432],
            [-0.1745, -0.1888, -0.1373],
            [ 0.2412,  0.1577,  0.0928],
            [ 0.1908,  0.0998,  0.0682],
            [ 0.0209,  0.0365, -0.0092],
            [ 0.0448, -0.0650, -0.1728],
            [-0.1658, -0.1045, -0.1308],
            [ 0.0542,  0.1545,  0.1325],
            [-0.0352, -0.1672, -0.2541]
        ]

class SC_B(LatentFormat):
    def __init__(self):
        self.scale_factor = 1.0 / 0.43
        self.latent_rgb_factors = [
            [ 0.1121,  0.2006,  0.1023],
            [-0.2093, -0.0222, -0.0195],
            [-0.3087, -0.1535,  0.0366],
            [ 0.0290, -0.1574, -0.4078]
        ]

class SD3(LatentFormat):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 1.5305
        self.shift_factor = 0.0609
        self.latent_rgb_factors = [
            [-0.0922, -0.0175,  0.0749],
            [ 0.0311,  0.0633,  0.0954],
            [ 0.1994,  0.0927,  0.0458],
            [ 0.0856,  0.0339,  0.0902],
            [ 0.0587,  0.0272, -0.0496],
            [-0.0006,  0.1104,  0.0309],
            [ 0.0978,  0.0306,  0.0427],
            [-0.0042,  0.1038,  0.1358],
            [-0.0194,  0.0020,  0.0669],
            [-0.0488,  0.0130, -0.0268],
            [ 0.0922,  0.0988,  0.0951],
            [-0.0278,  0.0524, -0.0542],
            [ 0.0332,  0.0456,  0.0895],
            [-0.0069, -0.0030, -0.0810],
            [-0.0596, -0.0465, -0.0293],
            [-0.1448, -0.1463, -0.1189]
        ]
        self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
        self.taesd_decoder_name = "taesd3_decoder"

    def process_in(self, latent):
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent):
        return (latent / self.scale_factor) + self.shift_factor

class StableAudio1(LatentFormat):
    latent_channels = 64
    latent_dimensions = 1

class Flux(SD3):
    latent_channels = 16
    def __init__(self):
        self.scale_factor = 0.3611
        self.shift_factor = 0.1159
        self.latent_rgb_factors =[
            [-0.0346,  0.0244,  0.0681],
            [ 0.0034,  0.0210,  0.0687],
            [ 0.0275, -0.0668, -0.0433],
            [-0.0174,  0.0160,  0.0617],
            [ 0.0859,  0.0721,  0.0329],
            [ 0.0004,  0.0383,  0.0115],
            [ 0.0405,  0.0861,  0.0915],
            [-0.0236, -0.0185, -0.0259],
            [-0.0245,  0.0250,  0.1180],
            [ 0.1008,  0.0755, -0.0421],
            [-0.0515,  0.0201,  0.0011],
            [ 0.0428, -0.0012, -0.0036],
            [ 0.0817,  0.0765,  0.0749],
            [-0.1264, -0.0522, -0.1103],
            [-0.0280, -0.0881, -0.0499],
            [-0.1262, -0.0982, -0.0778]
        ]
        self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
        self.taesd_decoder_name = "taef1_decoder"

    def process_in(self, latent):
        return (latent - self.shift_factor) * self.scale_factor

    def process_out(self, latent):
        return (latent / self.scale_factor) + self.shift_factor

class Mochi(LatentFormat):
    latent_channels = 12
    latent_dimensions = 3

    def __init__(self):
        self.scale_factor = 1.0
        self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
                                          -0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
                                          0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
                                          -0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
        self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
                                         0.959253732819592, 0.8244560132752793, 0.917259975397747,
                                         0.9294154431013696, 1.3720942357788521, 0.881393668867029,
                                         0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)

        self.latent_rgb_factors =[
            [-0.0069, -0.0045,  0.0018],
            [ 0.0154, -0.0692, -0.0274],
            [ 0.0333,  0.0019,  0.0206],
            [-0.1390,  0.0628,  0.1678],
            [-0.0725,  0.0134, -0.1898],
            [ 0.0074, -0.0270, -0.0209],
            [-0.0176, -0.0277, -0.0221],
            [ 0.5294,  0.5204,  0.3852],
            [-0.0326, -0.0446, -0.0143],
            [-0.0659,  0.0153, -0.0153],
            [ 0.0185, -0.0217,  0.0014],
            [-0.0396, -0.0495, -0.0281]
        ]
        self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
        self.taesd_decoder_name = None #TODO

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean

class LTXV(LatentFormat):
    latent_channels = 128
    latent_dimensions = 3

    def __init__(self):
        self.latent_rgb_factors = [
            [ 1.1202e-02, -6.3815e-04, -1.0021e-02],
            [ 8.6031e-02,  6.5813e-02,  9.5409e-04],
            [-1.2576e-02, -7.5734e-03, -4.0528e-03],
            [ 9.4063e-03, -2.1688e-03,  2.6093e-03],
            [ 3.7636e-03,  1.2765e-02,  9.1548e-03],
            [ 2.1024e-02, -5.2973e-03,  3.4373e-03],
            [-8.8896e-03, -1.9703e-02, -1.8761e-02],
            [-1.3160e-02, -1.0523e-02,  1.9709e-03],
            [-1.5152e-03, -6.9891e-03, -7.5810e-03],
            [-1.7247e-03,  4.6560e-04, -3.3839e-03],
            [ 1.3617e-02,  4.7077e-03, -2.0045e-03],
            [ 1.0256e-02,  7.7318e-03,  1.3948e-02],
            [-1.6108e-02, -6.2151e-03,  1.1561e-03],
            [ 7.3407e-03,  1.5628e-02,  4.4865e-04],
            [ 9.5357e-04, -2.9518e-03, -1.4760e-02],
            [ 1.9143e-02,  1.0868e-02,  1.2264e-02],
            [ 4.4575e-03,  3.6682e-05, -6.8508e-03],
            [-4.5681e-04,  3.2570e-03,  7.7929e-03],
            [ 3.3902e-02,  3.3405e-02,  3.7454e-02],
            [-2.3001e-02, -2.4877e-03, -3.1033e-03],
            [ 5.0265e-02,  3.8841e-02,  3.3539e-02],
            [-4.1018e-03, -1.1095e-03,  1.5859e-03],
            [-1.2689e-01, -1.3107e-01, -2.1005e-01],
            [ 2.6276e-02,  1.4189e-02, -3.5963e-03],
            [-4.8679e-03,  8.8486e-03,  7.8029e-03],
            [-1.6610e-03, -4.8597e-03, -5.2060e-03],
            [-2.1010e-03,  2.3610e-03,  9.3796e-03],
            [-2.2482e-02, -2.1305e-02, -1.5087e-02],
            [-1.5753e-02, -1.0646e-02, -6.5083e-03],
            [-4.6975e-03,  5.0288e-03, -6.7390e-03],
            [ 1.1951e-02,  2.0712e-02,  1.6191e-02],
            [-6.3704e-03, -8.4827e-03, -9.5483e-03],
            [ 7.2610e-03, -9.9326e-03, -2.2978e-02],
            [-9.1904e-04,  6.2882e-03,  9.5720e-03],
            [-3.7178e-02, -3.7123e-02, -5.6713e-02],
            [-1.3373e-01, -1.0720e-01, -5.3801e-02],
            [-5.3702e-03,  8.1256e-03,  8.8397e-03],
            [-1.5247e-01, -2.1437e-01, -2.1843e-01],
            [ 3.1441e-02,  7.0335e-03, -9.7541e-03],
            [ 2.1528e-03, -8.9817e-03, -2.1023e-02],
            [ 3.8461e-03, -5.8957e-03, -1.5014e-02],
            [-4.3470e-03, -1.2940e-02, -1.5972e-02],
            [-5.4781e-03, -1.0842e-02, -3.0204e-03],
            [-6.5347e-03,  3.0806e-03, -1.0163e-02],
            [-5.0414e-03, -7.1503e-03, -8.9686e-04],
            [-8.5851e-03, -2.4351e-03,  1.0674e-03],
            [-9.0016e-03, -9.6493e-03,  1.5692e-03],
            [ 5.0914e-03,  1.2099e-02,  1.9968e-02],
            [ 1.3758e-02,  1.1669e-02,  8.1958e-03],
            [-1.0518e-02, -1.1575e-02, -4.1307e-03],
            [-2.8410e-02, -3.1266e-02, -2.2149e-02],
            [ 2.9336e-03,  3.6511e-02,  1.8717e-02],
            [-1.6703e-02, -1.6696e-02, -4.4529e-03],
            [ 4.8818e-02,  4.0063e-02,  8.7410e-03],
            [-1.5066e-02, -5.7328e-04,  2.9785e-03],
            [-1.7613e-02, -8.1034e-03,  1.3086e-02],
            [-9.2633e-03,  1.0803e-02, -6.3489e-03],
            [ 3.0851e-03,  4.7750e-04,  1.2347e-02],
            [-2.2785e-02, -2.3043e-02, -2.6005e-02],
            [-2.4787e-02, -1.5389e-02, -2.2104e-02],
            [-2.3572e-02,  1.0544e-03,  1.2361e-02],
            [-7.8915e-03, -1.2271e-03, -6.0968e-03],
            [-1.1478e-02, -1.2543e-03,  6.2679e-03],
            [-5.4229e-02,  2.6644e-02,  6.3394e-03],
            [ 4.4216e-03, -7.3338e-03, -1.0464e-02],
            [-4.5013e-03,  1.6082e-03,  1.4420e-02],
            [ 1.3673e-02,  8.8877e-03,  4.1253e-03],
            [-1.0145e-02,  9.0072e-03,  1.5695e-02],
            [-5.6234e-03,  1.1847e-03,  8.1261e-03],
            [-3.7171e-03, -5.3538e-03,  1.2590e-03],
            [ 2.9476e-02,  2.1424e-02,  3.0424e-02],
            [-3.4925e-02, -2.4340e-02, -2.5316e-02],
            [-3.4127e-02, -2.2406e-02, -1.0589e-02],
            [-1.7342e-02, -1.3249e-02, -1.0719e-02],
            [-2.1478e-03, -8.6051e-03, -2.9878e-03],
            [ 1.2089e-03, -4.2391e-03, -6.8569e-03],
            [ 9.0411e-04, -6.6886e-03, -6.7547e-05],
            [ 1.6048e-02, -1.0057e-02, -2.8929e-02],
            [ 1.2290e-03,  1.0163e-02,  1.8861e-02],
            [ 1.7264e-02,  2.7257e-04,  1.3785e-02],
            [-1.3482e-02, -3.6427e-03,  6.7481e-04],
            [ 4.6782e-03, -5.2423e-03,  2.4467e-03],
            [-5.9113e-03, -6.2244e-03, -1.8162e-03],
            [ 1.5496e-02,  1.4582e-02,  1.9514e-03],
            [ 7.4958e-03,  1.5886e-03, -8.2305e-03],
            [ 1.9086e-02,  1.6360e-03, -3.9674e-03],
            [-5.7021e-03, -2.7307e-03, -4.1066e-03],
            [ 1.7450e-03,  1.4602e-02,  2.5794e-02],
            [-8.2788e-04,  2.2902e-03,  4.5161e-03],
            [ 1.1632e-02,  8.9193e-03, -7.2813e-03],
            [ 7.5721e-03,  2.6784e-03,  1.1393e-02],
            [ 5.1939e-03,  3.6903e-03,  1.4049e-02],
            [-1.8383e-02, -2.2529e-02, -2.4477e-02],
            [ 5.8842e-04, -5.7874e-03, -1.4770e-02],
            [-1.6125e-02, -8.6101e-03, -1.4533e-02],
            [ 2.0540e-02,  2.0729e-02,  6.4338e-03],
            [ 3.3587e-03, -1.1226e-02, -1.6444e-02],
            [-1.4742e-03, -1.0489e-02,  1.7097e-03],
            [ 2.8130e-02,  2.3546e-02,  3.2791e-02],
            [-1.8532e-02, -1.2842e-02, -8.7756e-03],
            [-8.0533e-03, -1.0771e-02, -1.7536e-02],
            [-3.9009e-03,  1.6150e-02,  3.3359e-02],
            [-7.4554e-03, -1.4154e-02, -6.1910e-03],
            [ 3.4734e-03, -1.1370e-02, -1.0581e-02],
            [ 1.1476e-02,  3.9281e-03,  2.8231e-03],
            [ 7.1639e-03, -1.4741e-03, -3.8066e-03],
            [ 2.2250e-03, -8.7552e-03, -9.5719e-03],
            [ 2.4146e-02,  2.1696e-02,  2.8056e-02],
            [-5.4365e-03, -2.4291e-02, -1.7802e-02],
            [ 7.4263e-03,  1.0510e-02,  1.2705e-02],
            [ 6.2669e-03,  6.2658e-03,  1.9211e-02],
            [ 1.6378e-02,  9.4933e-03,  6.6971e-03],
            [ 1.7173e-02,  2.3601e-02,  2.3296e-02],
            [-1.4568e-02, -9.8279e-03, -1.1556e-02],
            [ 1.4431e-02,  1.4430e-02,  6.6362e-03],
            [-6.8230e-03,  1.8863e-02,  1.4555e-02],
            [ 6.1156e-03,  3.4700e-03, -2.6662e-03],
            [-2.6983e-03, -5.9402e-03, -9.2276e-03],
            [ 1.0235e-02,  7.4173e-03, -7.6243e-03],
            [-1.3255e-02,  1.9322e-02, -9.2153e-04],
            [ 2.4222e-03, -4.8039e-03, -1.5759e-02],
            [ 2.6244e-02,  2.5951e-02,  2.0249e-02],
            [ 1.5711e-02,  1.8498e-02,  2.7407e-03],
            [-2.1714e-03,  4.7214e-03, -2.2443e-02],
            [-7.4747e-03,  7.4166e-03,  1.4430e-02],
            [-8.3906e-03, -7.9776e-03,  9.7927e-03],
            [ 3.8321e-02,  9.6622e-03, -1.9268e-02],
            [-1.4605e-02, -6.7032e-03,  3.9675e-03]
        ]

        self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]

class HunyuanVideo(LatentFormat):
    latent_channels = 16
    latent_dimensions = 3
    scale_factor = 0.476986
    latent_rgb_factors = [
        [-0.0395, -0.0331,  0.0445],
        [ 0.0696,  0.0795,  0.0518],
        [ 0.0135, -0.0945, -0.0282],
        [ 0.0108, -0.0250, -0.0765],
        [-0.0209,  0.0032,  0.0224],
        [-0.0804, -0.0254, -0.0639],
        [-0.0991,  0.0271, -0.0669],
        [-0.0646, -0.0422, -0.0400],
        [-0.0696, -0.0595, -0.0894],
        [-0.0799, -0.0208, -0.0375],
        [ 0.1166,  0.1627,  0.0962],
        [ 0.1165,  0.0432,  0.0407],
        [-0.2315, -0.1920, -0.1355],
        [-0.0270,  0.0401, -0.0821],
        [-0.0616, -0.0997, -0.0727],
        [ 0.0249, -0.0469, -0.1703]
    ]

    latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]

class Cosmos1CV8x8x8(LatentFormat):
    latent_channels = 16
    latent_dimensions = 3

    latent_rgb_factors = [
        [ 0.1817,  0.2284,  0.2423],
        [-0.0586, -0.0862, -0.3108],
        [-0.4703, -0.4255, -0.3995],
        [ 0.0803,  0.1963,  0.1001],
        [-0.0820, -0.1050,  0.0400],
        [ 0.2511,  0.3098,  0.2787],
        [-0.1830, -0.2117, -0.0040],
        [-0.0621, -0.2187, -0.0939],
        [ 0.3619,  0.1082,  0.1455],
        [ 0.3164,  0.3922,  0.2575],
        [ 0.1152,  0.0231, -0.0462],
        [-0.1434, -0.3609, -0.3665],
        [ 0.0635,  0.1471,  0.1680],
        [-0.3635, -0.1963, -0.3248],
        [-0.1865,  0.0365,  0.2346],
        [ 0.0447,  0.0994,  0.0881]
    ]

    latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]

class Wan21(LatentFormat):
    latent_channels = 16
    latent_dimensions = 3

    latent_rgb_factors = [
            [-0.1299, -0.1692,  0.2932],
            [ 0.0671,  0.0406,  0.0442],
            [ 0.3568,  0.2548,  0.1747],
            [ 0.0372,  0.2344,  0.1420],
            [ 0.0313,  0.0189, -0.0328],
            [ 0.0296, -0.0956, -0.0665],
            [-0.3477, -0.4059, -0.2925],
            [ 0.0166,  0.1902,  0.1975],
            [-0.0412,  0.0267, -0.1364],
            [-0.1293,  0.0740,  0.1636],
            [ 0.0680,  0.3019,  0.1128],
            [ 0.0032,  0.0581,  0.0639],
            [-0.1251,  0.0927,  0.1699],
            [ 0.0060, -0.0633,  0.0005],
            [ 0.3477,  0.2275,  0.2950],
            [ 0.1984,  0.0913,  0.1861]
        ]

    latent_rgb_factors_bias = [-0.1835, -0.0868, -0.3360]

    def __init__(self):
        self.scale_factor = 1.0
        self.latents_mean = torch.tensor([
            -0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
            0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
        ]).view(1, self.latent_channels, 1, 1, 1)
        self.latents_std = torch.tensor([
            2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
            3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
        ]).view(1, self.latent_channels, 1, 1, 1)


        self.taesd_decoder_name = None #TODO

    def process_in(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return (latent - latents_mean) * self.scale_factor / latents_std

    def process_out(self, latent):
        latents_mean = self.latents_mean.to(latent.device, latent.dtype)
        latents_std = self.latents_std.to(latent.device, latent.dtype)
        return latent * latents_std / self.scale_factor + latents_mean